_
i

AQS rF acquire(int) 7, %JAHF selflnterrup

t BT

{84 : wangduidui
[R5 https://Id246.com/article/1618976505586
SRR, HEE
el ER-tEESHEE 4.0 EfR (CC BY-SA 4.0)

https://ld246.com
https://ld246.com/member/wangduidui
https://ld246.com/article/1618976505586
https://ld246.com
https://creativecommons.org/licenses/by-sa/4.0/

/**

* Acquires in exclusive mode, ignoring interrupts. Implemented
* by invoking at least once {@link #tryAcquire},

* returning on success. Otherwise the thread is queued, possibly
* repeatedly blocking and unblocking, invoking {@link

* #tryAcquire} until success. This method can be used

* to implement method {@link Lock#lock}.

* @param arg the acquire argument. This value is conveyed to

* {@link #tryAcquire} but is otherwise uninterpreted and

* can represent anything you like.

*/

public final void acquire(int arg) {

if (ItryAcquire(arg) &&

acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfinterrupt();

}

selfinterruptfTHYRTIR 2acquireQueued(addWaiter(Node.EXCLUSIVE), arg)/5i%&iR[Etrue, X
73 8RB R AR BRI R P EE R LS i, REltruelRERA LS HET, Frllacquire AT
elfinterrupt ELSCE X IREN BRI FRH R ISR UTAYRA 7T,

At oaAEERisInterrupt(FIET, SERAEREBRNTIRES, 2@ park+FEERSTIAY, BRpar
HIREEZ RHEEETUIRT, FTAZR SRR SE R EEGRY.

acquireQueued(addWaiter(Node.EXCLUSIVE), arg)/5i%

/*'k

* Acquires in exclusive uninterruptible mode for thread already in
* queue. Used by condition wait methods as well as acquire.

*

* @param node the node
* @param arg the acquire argument
* @return {@code true} if interrupted while waiting
*/
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (i;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted,;

}
if (shouldParkAfterFailedAcquire(p, node) &&

parkAndCheckinterrupt())
interrupted = true;

JR3EE: AQS F acquire(int) 75AVEH selfinterrupt RYTEfE

https://ld246.com/article/1618976505586

}
} finally {
if (failed)
cancelAcquire(node);
}
}

TR RB RETHRTRITRR false, AEEIHIREEL, WNEIREBILMNI<TEBparkAndCheckl
terrupt()/5i% , W18 parkAndCheckinterrupt()iR[a]l T trueMERR & AT Rk,

BhftRcE Ntrue, EESEREIXHEMRC,

parkAndCheckinterrupt())/5i%

/**
* Convenience method to park and then check if interrupted
* @return {@code true} if interrupted
*/
private final boolean parkAndCheckinterrupt() {
LockSupport.park(this);
return Thread.interrupted();

}
parkHRI&AE, FEEAThread.interrupted ()75 AREIFHPIAT, FEHEEFITRS.

/**
* Tests whether the current thread has been interrupted. The
* <i>interrupted status</i> of the thread is cleared by this method. In
* other words, if this method were to be called twice in succession, the
* second call would return false (unless the current thread were
* interrupted again, after the first call had cleared its interrupted
* status and before the second call had examined it).
*
* <p>A thread interruption ignored because a thread was not alive
* at the time of the interrupt will be reflected by this method
* returning false.
*
* @return <code>true</code> if the current thread has been interrupted;
* <code>false</code> otherwise.
* @see #isInterrupted()
* @revised 6.0
*/
public static boolean interrupted() {
return currentThread().isInterrupted(true);

}

park unpark/RIEEEAIRAE

JR3EE: AQS F acquire(int) 75AVEH selfinterrupt RYTEfE

https://ld246.com/article/1618976505586

pEagnggunpark KUFEEE, . parkfIRHRSSFIMITEEE/AT0, WRAF0, SBTEEN0
R[E].

unparkfRHESKBTZEE N1, HAMZEIX N TERBET0. 5T 0T EILEE— N parkfILLF2
FrlApark /5 200 E T =fIGEE/S ., unpark/interrupt/BEiERE (A1R5EAE T unpark)

/**

* Disables the current thread for thread scheduling purposes unless the
* permit is available.

*

* <p>If the permit is available then it is consumed and the call returns
* immediately; otherwise

* the current thread becomes disabled for thread scheduling

* purposes and lies dormant until one of three things happens:

*

Some other thread invokes {@link #unpark unpark} with the
current thread as the target; or

Some other thread {@linkplain Thread#interrupt interrupts}
the current thread; or

The call spuriously (that is, for no reason) returns.

b R T T R R .

<p>This method does not report which of these caused the
method to return. Callers should re-check the conditions which caused
* the thread to park in the first place. Callers may also determine,

* for example, the interrupt status of the thread upon return.

* @param blocker the synchronization object responsible for this

* thread parking

* @since 1.6

*/

public static void park(Object blocker) {

Thread t = Thread.currentThread();

setBlocker(t, blocker);

UNSAFE.park(false, OL);

setBlocker(t, null);

JR3EE: AQS F acquire(int) 75AVEH selfinterrupt RYTEfE

https://ld246.com/article/1618976505586

