

2-OpenSSL

作者: Carey

- 原文链接: https://ld246.com/article/1610606336518
- 来源网站:链滴
- 许可协议:署名-相同方式共享 4.0 国际 (CC BY-SA 4.0)

2 OpenSSL

2.1 OpenSSL 介绍

官网: https://www.openssl.org/

OpenSSL计划在1998年开始,其目标是发明一套自由的加密工具,在互联网上使用。OpenSSL以Eric oung以及Tim Hudson两人开发的SSLeay为基础,随着两人前往RSA公司任职,SSLeay在1998年2月停止开发。因此在1998年12月,社群另外分支出OpenSSL,继续开发下去

OpenSSL管理委员会当前由7人组成有13个开发人员具有提交权限(其中许多人也是OpenSSL管理委会的一部分)。只有两名全职员工(研究员),其余的是志愿者

该项目每年的预算不到100万美元,主要依靠捐款。TLS 1.3 的开发由 Akamai 赞助

OpenSSL是一个开放源代码的软件库包,应用程序可以使用这个包来进行安全通信,避免窃听,同时 认另一端连线者的身份。这个包广泛被应用在互联网的网页服务器上

其主要库是以C语言所写成,实现了基本的加密功能,实现了SSL与TLS协议。OpenSSL可以运行在Op nVMS、 Microsoft Windows以及绝大多数类Unix操作系统上(包括Solaris, Linux, Mac OS X与 种版本的开放源代码BSD操作系统)

心脏出血漏洞: OpenSSL1.0.1版本 (不含1.0.1g) 含有一个严重漏洞,可允许攻击者读取服务器的存信息。该漏洞于2014年4月被公诸于世,影响三分之二的活跃网站

包括三个组件:

- libcrypto: 用于实现加密和解密的库
- libssl: 用于实现ssl通信协议的安全库
- openssl: 多用途命令行工具

2.2 Base64编码

Base64是网络上最常见的用于传输 8Bit 字节码的编码方式之一, Base64就是一种基于64个可打印 符来表示二进制数据的方法

编号	字符	编号	字符	编号	字符	编号	字符
0	А	16	Q	32	9	48	w
1	в	17	R	33	h	49	×
2	с	18	S	34	1	50	У
3	D	19	т	35	j	51	z
4	E	20	U	36	k	52	0
5	F	21	v	37	L	53	1
6	G	22	W	38	m	54	2
7	н	23	x	39	n	55	3
8	I	24	Y	40	0	56	4
9	J	25	z	41	p	57	5
10	к	26	а	42	q	58	6
11	L	27	b	43	r	59	7
12	м	28	с	44	s	60	8
13	N	29	d	45	t	61	9
14	0	30	e	46	u	62	+
15	Р	31	f	47	v	63	1

base64的编码过程如下:

将每3个字节放入一个24位的缓冲区中,最后不足3个字节的,缓冲区的剩余部分用0来填补。然后每次 取出6位(2的6次方为64,使用64个字符即可表示所有),将高2位用0来填充,组成一个新的字节, 算出这个新字节的十进制值,对应上面的编码表,输出相应的字符。这样不断地进行下去,就可完成 所有数据的编码工作。

按照以上规则对文本Man编码如下:

文本	м							a								n								
ASCII编码	77							97							110									
二进制位	0	1	0	0	1	1	0	1	0	1	1	0	0	0	0	1	0	1	1	0	1	1	1	0
索引	19							1	22			T		1	5				46					
Base64编码	т						W F						F	u										

范例:

```
[19:32:04 root@centos7 ~]#echo -n Man | base64 #进行编码
TWFu
[20:47:36 root@centos7 ~]#echo -n TWFu | base64 -d #解码
Man
[20:48:10 root@centos7 ~]#echo -n ab | base64
YWI=
[20:48:20 root@centos7 ~]#echo -n ab | base64 | base64 -d
ab
```

范例:破解下面密文

[20:48:44 root@centos7 ~]#]#echo -n JXU0RjYwJXU1OTdEJXU2NzBCJXU1M0NCJXVGRjAxJXU ExJXU2NjJGJXU3MzhCJXU2 NjUzJXU2NjI1 JXVGRjBDJXU2MjExJXU3Njg0UVEldUZGMUEyOT wODYyMCV1RkYwQyV1NTNFRiV1NEVFNSV1NTJBMCV1 NEUyQSV1NTk3RCV1NTNDQiV1NT xNyV1RkYxRiUwQQ== | base64 -d %u4F60%u597D%u670B%u53CB%uFF01%u6211%u662F%u738B%u6653%u6625base64: inval d input [20:49:34 root@centos7 ~]#echo -n %u4F60%u597D%u670B%u53CB%uFF01%u6211%u662F u738B%u6653%u6625 | base64 -d base64: invalid input

2.3 openssl命令

两种运行模式:

- 交互模式
- 批处理模式

三种子命令:

- 标准命令
- 消息摘要命令
- 加密命令

范例: openssl的交互和非交互式查看版本

```
[19:32:15 root@centos8 ~]#openssl version
OpenSSL 1.1.1g FIPS 21 Apr 2020
[20:52:31 root@centos8 ~]#openssl
OpenSSL> version
OpenSSL 1.1.1g FIPS 21 Apr 2020
```

2.3.1 openssl命令对称加密

工具: openssl enc, gpg

算法: 3des, aes, blowfish, twofish

enc命令:帮助:man enc

加密:

[20:57:20 root@centos8 ~]#openssl enc -e -des3 -a -salt -in fstab -out zhang.cipher

解密:

[20:57:42 root@centos8 ~]#openssl enc -d -des3 -a -salt -in zhang.cipher -out zhang

注意:需要输入密码

2.3.2 openssl命令单向哈希加密

工具: openssl dgst

算法:md5sum, sha1sum, sha224sum, sha256sum...

dgst 命令:帮助: man dgst

openssl dgst -md5 [-hex默认] /PATH/SOMEFILE

openssl dgst -md5 testfile md5sum /PATH/TO/SOMEFILE

[21:00:07 root@centos8 ~]#openssl md5 fstab MD5(fstab)= 305613baf4b7a3319ee340fb8d53d2cf [21:00:10 root@centos8 ~]#openssl sha512 fstab SHA512(fstab)= ce24e2d29c1c65f6b7808f47aa91fa840ac11f43337f0d7a10af56666e02f46468 8c532590187daddfbc70f70c73b739ee87c1e581d9f1d9e5e7867e8ae4f62

```
[21:00:21 root@centos8 ~]#sha512sum fstab
ce24e2d29c1c65f6b7808f47aa91fa840ac11f43337f0d7a10af56666e02f4646888c532590187da
dfbc70f70c73b739ee87c1e581d9f1d9e5e7867e8ae4f62 fstab
```

补充知识:

MAC: Message Authentication Code,单向加密的一种延伸应用,用于实现网络通信中保证所传输 据的完整性机制 HMAC: hash-based MAC,使用哈希算法

2.3.3 openssl命令生成用户密码

passwd命令: 帮助man sslpasswd

```
[21:00:43 root@centos8 ~]#openssl passwd --help
Usage: passwd [options]
Valid options are:
             Display this summary
-help
-in infile
             Read passwords from file
             Never verify when reading password from terminal
-noverify
             No warnings
-quiet
           Format output as table
-table
             Switch table columns
-reverse
           Use provided salt
-salt val
           Read passwords from stdin
-stdin
            SHA512-based password algorithm
-6
-5
            SHA256-based password algorithm
           MD5-based password algorithm, Apache variant
-apr1
         MD5-based password algorithm
-1
               AIX MD5-based password algorithm
-aixmd5
             Standard Unix password algorithm (default)
-crypt
              Load the file(s) into the random number generator
-rand val
-writerand outfile Write random data to the specified file
[20:50:55 root@centos7 ~]#openssl passwd --help
Usage: passwd [options] [passwords]
where options are
             standard Unix password algorithm (default)
-crypt
-1
           MD5-based password algorithm
           MD5-based password algorithm, Apache variant
-apr1
-salt string
            use provided salt
-in file
           read passwords from file
-stdin
            read passwords from stdin
            never verify when reading password from terminal
-noverify
-quiet
             no warnings
-table
            format output as table
```

-reverse switch table columns

范例:

[09:14:25 root@centos8 ~]#getent shadow zhang zhang:\$6\$0nQwTH1iY2ZSQYbl\$WkasOxw7n5k8ZRY.5fa49mkXhuJGNi7YGHccEgoyi9TsVd1nf/ QBvmQ9jnChGHXJGHENXH3wYsRamP/CB4/B1:18639:0:99999:7:::

[09:14:31 root@centos8 ~]#echo 123456 | openssl passwd -6 -salt 0nQwTH1iY2ZSQYbl -stdin \$6\$0nQwTH1iY2ZSQYbl\$WkasOxw7n5k8ZRY.5fa49mkXhuJGNi7YGHccEgoyi9TsVd1nf/5QBv Q9jnChGHXJGHENXH3wYsRamP/CB4/B1

[09:15:07 root@centos8 ~]#openssl passwd -6 -salt 0nQwTH1iY2ZSQYbl 123456 \$6\$0nQwTH1iY2ZSQYbl\$WkasOxw7n5k8ZRY.5fa49mkXhuJGNi7YGHccEgoyi9TsVd1nf/5QBv Q9jnChGHXJGHENXH3wYsRamP/CB4/B1

范例:利用Python程序在Centos7,生成sha512加密密码,centos7 openssl版本原因没有sha52加密算法

[21:03:46 root@centos7 ~]#python -c 'import crypt,getpass;pw="magedu";print(crypt.crypt(w))' \$6\$pxOXH9vfPThLDqmQ\$FI3OLfvAbxFtwMhB.L6qKADg5XxYnpQA1q5sFqDen4Z/sJYbu4NAK ddO/q.PMU9F2GPvNyDtD7Ja6F19W4qj.

范例: 创建新用户同时指定密码, 在CentOS8和Ubuntu都通用

[09:18:30 root@centos8 ~]#useradd -p `echo 123456 | openssl passwd -6 -salt 0nQwTH1iY2Z QYbl -stdin` wang

[09:19:12 root@centos8 ~]#getent shadow zhang zhang:\$6\$0nQwTH1iY2ZSQYbl\$WkasOxw7n5k8ZRY.5fa49mkXhuJGNi7YGHccEgoyi9TsVd1nf/ QBvmQ9jnChGHXJGHENXH3wYsRamP/CB4/B1:18639:0:99999:7:::

[09:19:21 root@centos8 ~]#getent shadow wang wang:\$6\$0nQwTH1iY2ZSQYbI\$WkasOxw7n5k8ZRY.5fa49mkXhuJGNi7YGHccEgoyi9TsVd1nf/ QBvmQ9jnChGHXJGHENXH3wYsRamP/CB4/B1:18639:0:99999:7:::

范例:

[09:21:03 root@centos8 ~]#openssl passwd -1 -salt SALT (最多8位) [09:21:11 root@centos8 ~]#openssl passwd -1 -salt centos

2.3.4 openssl命令生成随机数

随机数生成器:伪随机数字,利用键盘和鼠标,块设备中断生成随机数

/dev/random #仅从熵池返回随机数;随机数用尽,阻塞 /dev/urandom #从熵池返回随机数;随机数用尽,会利用软件生成伪随机数,非阻塞

帮助: man sslrand

openssl rand -base64|-hex NUM

NUM: 表示字节数, 使用-hex, 每个字符为十六进制, 相当于4位二进制, 出现的字符数为NUM*2

范例: 生成随机10位长度密码

```
[09:24:11 root@centos8 ~]#openssl rand -base64 9 |head -c10
Vy8567ZT4x
[09:25:40 root@centos8 ~]#tr -dc '[:alnum:]' < /dev/urandom | head -c 10
3hl4sC5geK
```

2.3.5 openssl命令实现PKI

公钥加密:

- 算法: RSA, ELGamal
- 工具: gpg, openssl rsautl (man rsautl)

数字签名:

• 算法: RSA, DSA, ELGamal

密钥交换:

- 算法: dh
- DSA: Digital Signature Algorithm
- DSS: Digital Signature Standard
- RSA:

openssl命令生成密钥对儿: man genrsa

生成私钥

openssl genrsa -out /PATH/TO/PRIVATEKEY.FILE [-des3] [NUM_BITS,默认2048]

```
@对称加密算法:man genrsa
-aes128, -aes192, -aes256, -aria128, -aria192, -aria256, -camellia128, - camellia192, -camellia
56, -des, -des3, -idea
```

解密加密的密钥

openssl rsa -in /PATH/TO/PRIVATEKEY.FILE -out /PATH/TO/PRIVATEKEY2.FILE

范例:

#生成对称秘钥加密的私钥,通过设置严格的权限实现安全,应用更广泛 [09:26:54 root@centos8 ~]#(umask 077; openssl genrsa -out app.key 2048)

[09:31:16 root@centos8 ~]#cat app.key #将加密对称秘钥key解密,此方式更安全,但是不方便 [09:34:18 root@centos8 ~]#openssl genrsa -out app2.key -des3 2048

[09:35:40 root@centos8 ~]#cat app2.key

从私钥中提取出公钥

openssl rsa -in PRIVATEKEYFILE -pubout -out PUBLICKEYFILE

范例:默认长度和指定长度的文件大小

[09:41:08 root@centos8 ~]#(umask 077;openssl genrsa -out app.key)

[09:41:12 root@centos8 ~]#ll total 4 -rw----- 1 root root 1679 Jan 12 09:41 app.key [09:41:17 root@centos8 ~]#openssl genrsa -out app.key 1024

[09:41:53 root@centos8 ~]#ll total 4 -rw----- 1 root root 891 Jan 12 09:41 app.key

范例: 从私钥提取公钥

[09:41:58 root@centos8 ~]#openssl rsa -in /root/app.key -pubout -out app.key.pub writing RSA key [09:43:02 root@centos8 ~]#ls app.key app.key.pub [09:43:03 root@centos8 ~]#cat app.key.pub -----BEGIN PUBLIC KEY-----MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDjXRDEyJQpyAavttGBHdymjkgz A6rA85IWmPCq7kZ9eE69IuiJX6tsCt+vIVZpDtRuZaksMjXFZYm2EybDTSCnd6hV aEptBaQbjCfFDBB5071Z7KZIF6LcUDh/T3yCU3SLDwnmORi2326pfO5FcL9hkyim rLfs76TYmNcZN5IILQIDAQAB -----END PUBLIC KEY-----

范例: 生成加密的私钥, 并解密

[09:46:10 root@centos8 ~]#openssl genrsa -out /root/app.key -des3 1024 Generating RSA private key, 1024 bit long modulus (2 primes)+++++ e is 65537 (0x010001) Enter pass phrase for /root/app.key: Verifying - Enter pass phrase for /root/app.key: [09:46:18 root@centos8 ~]#ll total 4 -rw------ 1 root root 963 Jan 12 09:46 app.key [09:46:21 root@centos8 ~]#cat app.key

[09:46:30 root@centos8 ~]#openssl rsa -in /root/app.key -out /root/app.key Enter pass phrase for /root/app.key: writing RSA key [09:47:07 root@centos8 ~]#ls -l total 4 -rw----- 1 root root 887 Jan 12 09:47 app.key [09:47:11 root@centos8 ~]#cat /root/app.key

2.4 建立私有CA实现证书申请颁发

建立私有CA:

- OpenCA: OpenCA开源组织使用Perl对OpenSSL进行二次开发而成的一套完善的PKI免费软件
- openssl: 相关包 openssl和openssl-libs

证书申请及签署步骤:

- 1. 生成证书申请请求
- 2. RA核验
- 3. CA签署
- 4. 获取证书

范例: openssl-libs包

```
[09:47:25 root@centos8 ~]#rpm -ql openssl-libs
/etc/pki/tls
/etc/pki/tls/certs
/etc/pki/tls/ct_log_list.cnf
/etc/pki/tls/misc
```

••••

openssl的配置文件:

[09:49:35 root@centos8 ~]#cat /etc/pki/tls/openssl.cnf

三种策略: match匹配、optional可选、supplied提供

match:要求申请填写的信息跟CA设置信息必须一致 optional:可有可无,跟CA设置信息可不一致 supplied:必须填写这项申请信息

2.4.1 创建私有CA

1.创建CA所需要的文件

#生成证书索引数据库文件 touch /etc/pki/CA/index.txt

#指定第一个颁发证书的序列号 echo 01 > /etc/pki/CA/serial

2.生成CA私钥

cd /etc/pki/CA/ (umask 066; openssl genrsa -out private/cakey.pem 2048)

3.生成CA自签证书

#需要手动输入机构信息 openssl req -new -x509 -key /etc/pki/CA/private/cakey.pem -days 3650 -out /etc/pki/CA/cace t.pem

选项说明:

-new: 生成新证书签署请求 -x509: 专用于CA生成自签证书 -key: 生成请求时用到的私钥文件 -days n: 证书的有效期限 -out /PATH/TO/SOMECERTFILE: 证书的保存路径

国家代码: https://country-code.cl/

范例: 一键生成自签名证书

[09:50:22 root@centos8 ~]#openssl req -utf8 -newkey rsa:1024 -subj "/CN=www.zhangzhuo. rg" -keyout app.key -nodes -x509 -out app.crt

[09:56:25 root@centos8 ~]#openssl x509 -in app.crt -noout -text

2.4.2 申请证书并颁发证书

1.为需要使用证书的主机生成私钥

(umask 066; openssl genrsa -out /data/test.key 2048)

2.为需要使用证书的主机生成证书申请文件

openssl req -new -key /data/test.key -out /data/test.csr

3.在CA签署证书并将证书颁发给请求者

openssl ca -in /data/test.csr -out /etc/pki/CA/certs/test.crt -days 100

注意:默认要求国家,省,公司名称三项必须和CA一致

4.查看证书中的信息

openssl x509 -in /PATH/FROM/CERT_FILE -noout -text|issuer|subject|serial|dates

#查看指定编号的证书状态 openssl ca -status SERIAL

2.4.3 吊销证书

在客户端获取要吊销的证书的serial

openssl x509 -in /PATH/FROM/CERT_FILE -noout -serial -subject

在CA上,根据客户提交的serial与subject信息,对比检验是否与index.txt文件中的信息一致,吊销书:

openssl ca -revoke /etc/pki/CA/newcerts/SERIAL.pem

指定第一个吊销证书的编号,注意:第一次更新证书吊销列表前,才需要执行

echo 01 > /etc/pki/CA/crlnumber

更新证书吊销列表

openssl ca -gencrl -out /etc/pki/CA/crl.pem

查看crl文件:

openssl crl -in /etc/pki/CA/crl.pem -noout -text

2.4.4 CentOS7 创建自签名证书

#只有centos7有这个功能使用make创建自签证书 [09:07:30 root@centos7 ~]#cd /etc/pki/tls/certs

[10:05:58 root@centos7 certs]#make

[10:06:01 root@centos7 certs]#ls ca-bundle.crt ca-bundle.trust.crt make-dummy-cert Makefile renew-dummy-cert

[10:06:11 root@centos7 certs]#cat Makefile

[10:08:32 root@centos7 certs]#make app.crt

[10:09:30 root@centos7 certs]#ls app.crt app.key ca-bundle.crt ca-bundle.trust.crt make-dummy-cert Makefile renew-dum y-cert

[10:09:34 root@centos7 certs]#openssl x509 -in app.crt -noout -text

2.4.5 实战案例:在Centos8上实现私有CA和证书申请

2.4.5.1 创建CA相关目录和文件

4 directories, 0 files [10:13:27 root@centos8 ~]#touch /etc/pki/CA/index.txt [10:13:58 root@centos8 ~]#echo 00 > /etc/pki/CA/serial

index.txt和serial文件在颁发证书时需要使用,如果不存在,会出现以下错误提示

[root@centos8 ~]#openssl ca -in /data/app1/app1.csr -out /etc/pki/CA/certs/app1.crt -days 1000 Using configuration from /etc/pki/tls/openssl.cnf 140040142845760:error:02001002:system li rary:fopen:No such file or directory:crypto/bio/bss_file.c:72:fopen('/etc/pki/CA/index.txt','r') 1 [root@centos8 ~]#openssl ca -in /data/app1/app1.csr -out /etc/pki/CA/certs/app1.crt -days 1000 Using configuration from /etc/pki/tls/openssl.cnf /etc/pki/CA/serial: No such file or directory error while loading serial number 140240559408960:error:02001002:system library:fopen:No such file or directory:crypto/bio/bs _file.c:72:fopen('/etc/pki/CA/serial','r') 140240559408960:error:2006D080:BIO routines:BIO_ne _file:no such file:crypto/bio/bss file.c:79:

2.4.5.2 创建CA的私钥

[10:14:24 root@centos8 ~]#cd /etc/pki/CA/ [10:16:14 root@centos8 CA]#(umask 066;openssl genrsa -out private/cakey.pem 2048)

[10:16:45 root@centos8 CA]#tree

certs
crl
index.txt
newcerts
private
│ └── cakey.pem
└── serial

4 directories, 3 files [10:16:50 root@centos8 CA]#ll private/ total 4 -rw----- 1 root root 1679 Jan 12 10:16 cakey.pem [10:17:06 root@centos8 CA]#cat private/cakey.pem

2.4.5.3 给CA颁发自签名证书

[10:17:15 root@centos8 CA]#openssl req -new -x509 -key /etc/pki/CA/private/cakey.pem -da s 3650 -out /etc/pki/CA/cacert.pem
You are about to be asked to enter information that will be incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
Country Name (2 letter code) [XX]:CN

State or Province Name (full name) []:neimeng Locality Name (eg, city) [Default City]:baotou Organization Name (eg, company) [Default Company Ltd]:zhangzhuo Organizational Unit Name (eg, section) []:devops Common Name (eg, your name or your server's hostname) []:ca.zhangzhuo.org Email Address []:admin@zhangzhuo.org [10:19:47 root@centos8 CA]#tree

cacert.pem
— certs
crl
— index.txt
newcerts
— private
└── cakey.pem
—— serial

4 directories, 4 files [10:19:49 root@centos8 CA]#cat /etc/pki/CA/cacert.pem

[10:20:14 root@centos8 CA]#openssl x509 -in /etc/pki/CA/cacert.pem -noout -text

#将文件cacert.pem传到windows上,修改文件名为cacert.pem.crt,双击可以看到下面显示

<mark>。2</mark> 证书						×
常规	详细信息 证	[书路径				
此任	○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	5不受信任。 5 1构"存储区。	要启用信任,	请将该证书	安装到"受信	-
-	颁发给:	ca.zhang	zhuo.org			
	颁发者:	ca.zhang	zhuo.org			
	有效期从	2021-01-12	<u>월</u> 2031-01	1-10		
			安装证书	B(I)	颁发者说明(S)	
					确定	

2.4.5.4 用户生成私钥和证书申请

[10:24:15 root@centos8 CA]#mkdir -p /data/app1 [10:30:11 root@centos8 CA]#(umask 066;openssl genrsa -out /data/app1/app1.key 2048)

[10:30:39 root@centos8 CA]#cat /data/app1/app1.key

[10:30:45 root@centos8 CA]#openssl req -new -key /data/app1/app1.key -out /data/app1/ap 1.csr

[10:32:48 root@centos8 CA]#ll /data/app1/ total 8 -rw-r--r-- 1 root root 1066 Jan 12 10:32 app1.csr -rw--r--- 1 root root 1675 Jan 12 10:30 app1.key

默认有三项内容必须和CA一致:国家,省份,组织,如果不同,会出现下面的提示

[root@centos8 ~]#openssl ca -in /data/app2/app2.csr -out /etc/pki/CA/certs/app2.crt Using configuration from /etc/pki/tls/openssl.cnf Check that the request matches the signatu e Signature ok The stateOrProvinceName field is different between CA certificate (beijing) and the request (h bei)

2.4.5.5 CA颁发证书

[10:37:25 root@centos8 CA]#openssl ca -in /data/app1/app1.csr -out /etc/pki/CA/certs/app1. rt -days 1000 Using configuration from /etc/pki/tls/openssl.cnf Check that the request matches the signature Signature ok **Certificate Details:** Serial Number: 0 (0x0) Validity Not Before: Jan 12 02:37:26 2021 GMT Not After : Oct 9 02:37:26 2023 GMT Subject: = CN countryName stateOrProvinceName = neimeng organizationName = zhangzhuo organizationalUnitName = devops commonName = app.zhangzhuo.org emailAddress = root@zhangzhuo.org emailAddress = root@zhangzhuo.org X509v3 extensions: X509v3 Basic Constraints: CA:FALSE Netscape Comment: **OpenSSL Generated Certificate** X509v3 Subject Key Identifier: 08:0B:BD:FA:EF:0E:88:2F:AF:4D:3D:D5:2A:85:68:7B:76:7B:0E:92 X509v3 Authority Key Identifier: keyid:80:B9:1E:65:EF:5C:8B:75:C4:D3:C0:A8:A0:0D:91:4F:D8:87:48:3A

Certificate is to be certified until Oct 9 02:37:26 2023 GMT (1000 days) Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [v/n]v Write out database with 1 new entries Data Base Updated [10:38:12 root@centos8 CA]#tree /etc/pki/CA/ /etc/pki/CA/ — cacert.pem - certs └── app1.crt – crl - index.txt - index txt attr - index.txt.old - newcerts └___ 00.pem - private cakey.pem - serial - serial.old

4 directories, 9 files

2.4.5.6 查看证书

[10:38:21 root@centos8 CA]#cat /etc/pki/CA/certs/app1.crt

[10:39:21 root@centos8 CA]#openssl x509 -in /etc/pki/CA/certs/app1.crt -noout -text

[10:39:57 root@centos8 CA]#openssl x509 -in /etc/pki/CA/certs/app1.crt --noout -issuer issuer=C = CN, ST = neimeng, L = baotou, O = zhangzhuo, OU = devops, CN = ca.zhangzhuo org, emailAddress = admin@zhangzhuo.org

[10:40:49 root@centos8 CA]#openssl x509 -in /etc/pki/CA/certs/app1.crt --noout -subject subject=C = CN, ST = neimeng, O = zhangzhuo, OU = devops, CN = app.zhangzhuo.org, ema lAddress = root@zhangzhuo.org

[10:41:03 root@centos8 CA]#openssl x509 -in /etc/pki/CA/certs/app1.crt --noout -dates notBefore=Jan 12 02:37:26 2021 GMT notAfter=Oct 9 02:37:26 2023 GMT

[10:41:27 root@centos8 CA]#openssl x509 -in /etc/pki/CA/certs/app1.crt --noout -serial serial=00

#验证指定编号对应证书的有效性 [10:42:26 root@centos8 CA]#openssl ca -status 00 Using configuration from /etc/pki/tls/openssl.cnf 00=Valid (V) [10:42:37 root@centos8 CA]#cat /etc/pki/CA/index.txt V 231009023726Z 00 unknown /C=CN/ST=neimeng/O=zhangzhuo/OU=devops/C =app.zhangzhuo.org/emailAddress=root@zhangzhuo.org [10:43:02 root@centos8 CA]#cat /etc/pki/CA/index.txt.old [10:43:17 root@centos8 CA]#cat /etc/pki/CA/serial 01 [10:43:31 root@centos8 CA]#cat /etc/pki/CA/serial.old 00

2.4.5.7 将证书相关文件发送到用户端使用

0 directories, 3 files

2.4.5.8 证书的信任

默认生成的证书,在windows上是不被信任的,可以通过下面的操作实现信任

打开internet属性导入证书就可以了

2.4.5.9 证书的吊销

[10:48:34 root@centos8 CA]#openssl ca -revoke /etc/pki/CA/newcerts/00.pem
Using configuration from /etc/pki/tls/openssl.cnf
Revoking Certificate 00.
Data Base Updated
[10:48:54 root@centos8 CA]#openssl ca -status 00
Using configuration from /etc/pki/tls/openssl.cnf
00=Revoked (R)
[10:49:08 root@centos8 CA]#cat /etc/pki/CA/index.txt
R 231009023726Z 210112024854Z 00 unknown /C=CN/ST=neimeng/O=zhangzhuo
OU=devops/CN=app.zhangzhuo.org/emailAddress=root@zhangzhuo.org

2.4.5.10 生成证书吊销列表文件

#吊销证书 [10:48:34 root@centos8 CA]#openssl ca -revoke /etc/pki/CA/newcerts/00.pem

[10:48:54 root@centos8 CA]#openssl ca -status 00 00=Revoked (R)

#生成吊销证书文件 [10:50:29 root@centos8 CA]#echo 01 > /etc/pki/CA/crlnumber [10:51:08 root@centos8 CA]#openssl ca -gencrl -out /etc/pki/CA/crl.pem Using configuration from /etc/pki/tls/openssl.cnf [10:51:34 root@centos8 CA]#cat /etc/pki/CA/crlnumber 02 [10:51:50 root@centos8 CA]#cat /etc/pki/CA/crl.pem

[10:51:58 root@centos8 CA]#openssl crl -in /etc/pki/CA/crl.pem --noout -text Certificate Revocation List (CRL): Version 2 (0x1) Signature Algorithm: sha256WithRSAEncryption Issuer: C = CN, ST = neimeng, L = baotou, O = zhangzhuo, OU = devops, CN = ca.zhangzhuo org, emailAddress = admin@zhangzhuo.org Last Update: Jan 12 02:51:34 2021 GMT Next Update: Feb 11 02:51:34 2021 GMT CRL extensions: X509v3 CRL Number:

1

Revoked Certificates: Serial Number: 00 Revocation Date: Jan 12 02:48:54 2021 GMT Signature Algorithm: sha256WithRSAEncryption 23:14:1b:01:2d:67:d6:5a:70:13:7b:f2:68:e5:7f:d6:91:91: 76:1f:c2:f2:11:39:6d:d2:87:a5:0b:d0:2b:15:f9:cd:55:84: a9:b5:1c:7e:c1:01:30:5f:7d:c1:c3:8a:ef:ad:ee:32:21:d6: 77:1c:46:d9:30:92:1d:56:ad:40:54:59:19:5e:95:e1:78:20: 0f:ff:cd:e7:22:be:f5:6a:e0:28:a8:55:89:26:40:d8:23:d0: 76:0d:f6:8b:b9:7a:12:89:a2:70:46:37:aa:8f:6d:0e:31:8a: 08:34:78:04:cb:15:3a:95:ec:3e:ac:67:d0:6b:be:48:0f:92: 39:e9:e3:ab:25:89:04:99:b2:2c:83:fe:96:79:5c:36:85:62: 7b:d2:00:f2:8f:c0:7d:d0:f3:8b:a6:58:db:3d:57:56:fa:64: 55:a7:f8:03:cc:ca:7b:79:4a:7b:21:d0:62:48:7a:8b:51:a2: c2:3a:5d:a7:e3:98:7c:c5:b1:db:37:e7:32:19:41:e0:8d:c4: 95:e7:de:a2:05:bb:9f:62:30:76:69:cb:7d:4d:a9:75:66:c6: 94:48:7a:72:20:b2:0b:d6:73:d9:32:55:60:0b:25:ff:88:18: 56:46:90:f6:58:17:35:3e:b1:6e:38:b4:b0:dd:95:e3:43:7e: 73:0e:1c:f0

[10:52:32 root@centos8 CA]#sz /etc/pki/CA/crl.pem #将此文件crl.pem传到windows上并改后缀为crl.pem.crl,双击可以查看以下显示