_
i

Hyperledger Fabric-1.4.1 #/UBCE (confi
gtx.yaml,core.yaml,orderer.yaml)

{E#&: jockming112
[BSZ4EE: https://Id246.com/article/1608532362676
SRR, S5
Ay BER-1EESNHEE 4.0 Efx (CC BY-SA 4.0)

https://ld246.com
https://ld246.com/member/jockming112
https://ld246.com/article/1608532362676
https://ld246.com
https://creativecommons.org/licenses/by-sa/4.0/

UTECESRBIR, iREMIMER. XA T fabricRI5eBE ELAR S 1MECETRIERS

o

configtx.yaml

HHHHHHHHHHHHHHHHHHHHHHHH AR A AR AR BB R R BB BB R R R R R R R BB R RS
H#HHHHHHH

#

ORGANIZATIONS

#
#
This section defines the organizational identities that can be referenced

in the configuration profiles.

#

HHHHH R HHHHHHHHHH AR AR R R R R R R R R R R R R R R RS
HH#HHHHHHH

Organizations:

SampleOrg defines an MSP using the sampleconfig. It should never be used
in production but may be used as a template for other definitions.
- &SampleOrg
Name is the key by which this org will be referenced in channel
configuration transactions.
Name can include alphanumeric characters as well as dots and dashes.
Name: SampleOrg

1D is the key by which this org's MSP definition will be referenced.
ID can include alphanumeric characters as well as dots and dashes.
ID: SampleOrg

MSPDir is the filesystem path which contains the MSP configuration.
MSPDir: msp

Policies defines the set of policies at this level of the config tree
For organization policies, their canonical path is usually
/Channel/<Application|Orderer>/<OrgName>/<PolicyName>
Policies: &SampleOrgPolicies
Readers:
Type: Signature
Rule: "OR('SampleOrg.member")"
If your MSP is configured with the new NodeOUs, you might
want to use a more specific rule like the following:
Rule: "OR('SampleOrg.admin’, 'SampleOrg.peer’, 'SampleOrg.client’)"
Writers:
Type: Signature
Rule: "OR('SampleOrg.member")"
If your MSP is configured with the new NodeOUs, you might
want to use a more specific rule like the following:
Rule: "OR('SampleOrg.admin’, 'SampleOrg.client')"
Admins:
Type: Signature
Rule: "OR('SampleOrg.admin’)"

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

AnchorPeers defines the location of peers which can be used for
cross-org gossip communication. Note, this value is only encoded in
the genesis block in the Application section context.
AnchorPeers:
- Host: 127.0.0.1
Port: 7051

HHHHHHH R HHHHHHHHHHH AR AR R AR BB R R BB R R R R R R B R RR R R R R R RS
HHHAHHHHH

CAPABILITIES

This section defines the capabilities of fabric network. This is a new
concept as of v1.1.0 and should not be utilized in mixed networks with
v1.0.x peers and orderers. Capabilities define features which must be
present in a fabric binary for that binary to safely participate in the
fabric network. For instance, if a new MSP type is added, newer binaries
might recognize and validate the signatures from this type, while older
binaries without this support would be unable to validate those
transactions. This could lead to different versions of the fabric binaries
having different world states. Instead, defining a capability for a channel
informs those binaries without this capability that they must cease
processing transactions until they have been upgraded. For v1.0.x if any
capabilities are defined (including a map with all capabilities turned off)
then the v1.0.x peer will deliberately crash.

HHAEHFAHFHFHHFEHRHEHRHFEHFHRHHE

HHHHHH S HHHHHHH AR AR R R R R R R R R R RS
HH#HHHHHHH
Capabilities:
Channel capabilities apply to both the orderers and the peers and must be
supported by both.
Set the value of the capability to true to require it.
Channel: &ChannelCapabilities
V1.3 for Channel is a catchall flag for behavior which has been
determined to be desired for all orderers and peers running at the v1.3.x
level, but which would be incompatible with orderers and peers from
prior releases.
Prior to enabling V1.3 channel capabilities, ensure that all
orderers and peers on a channel are at v1.3.0 or later.
V1 3: true

Orderer capabilities apply only to the orderers, and may be safely
used with prior release peers.
Set the value of the capability to true to require it.
Orderer: &OrdererCapabilities
V1.1 for Orderer is a catchall flag for behavior which has been
determined to be desired for all orderers running at the v1.1.x
level, but which would be incompatible with orderers from prior releases.
Prior to enabling V1.1 orderer capabilities, ensure that all
orderers on a channel are at v1.1.0 or later.
V1 1: true

Application capabilities apply only to the peer network, and may be safely
used with prior release orderers.

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

Set the value of the capability to true to require it.
Application: &ApplicationCapabilities
V1.3 for Application enables the new non-backwards compatible
features and fixes of fabric v1.3.
V1 3: true
V1.2 for Application enables the new non-backwards compatible
features and fixes of fabric v1.2 (note, this need not be set if
later version capabilities are set)
V1 2: false
V1.1 for Application enables the new non-backwards compatible
features and fixes of fabric v1.1 (note, this need not be set if
later version capabilities are set).
V1 _1: false

B i g g
HHHAHHHHH

#

APPLICATION

#
#
This section defines the values to encode into a config transaction or
genesis block for application-related parameters.
#
HHHHHHHHHHHHHHHHHHHHHHHHHA AR AR AR BB R R BB R R R R RS
HHHHHHHHH
Application: &ApplicationDefaults
ACLs: &ACLsDefault

This section provides defaults for policies for various resources

in the system. These "resources” could be functions on system chaincodes

(e.g., "GetBlockByNumber" on the "gscc" system chaincode) or other resources

(e.g.,who can receive Block events). This section does NOT specify the resource's

definition or API, but just the ACL policy for it.

#

User's can override these defaults with their own policy mapping by defining the

mapping under ACLs in their channel definition

#---Lifecycle System Chaincode (Iscc) function to policy mapping for access control---#

ACL policy for Iscc's "getid" function
Iscc/ChaincodeExists: /Channel/Application/Readers

ACL policy for Iscc's "getdepspec” function
Iscc/GetDeploymentSpec: /Channel/Application/Readers

ACL policy for Iscc's "getccdata” function
Iscc/GetChaincodeData: /Channel/Application/Readers

ACL Policy for Iscc's "getchaincodes” function
Iscc/GetInstantiatedChaincodes: /Channel/Application/Readers

#---Query System Chaincode (gscc) function to policy mapping for access control---#

ACL policy for gscc's "GetChainlInfo" function
gscc/GetChaininfo: /Channel/Application/Readers

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

ACL policy for gscc's "GetBlockByNumber" function
gscc/GetBlockByNumber: /Channel/Application/Readers

ACL policy for gscc's "GetBlockByHash" function
gscc/GetBlockByHash: /Channel/Application/Readers

ACL policy for gscc's "GetTransactionByID" function
gscc/GetTransactionByID: /Channel/Application/Readers

ACL policy for gscc's "GetBlockByTxID" function
gscc/GetBlockByTxID: /Channel/Application/Readers

#---Configuration System Chaincode (cscc) function to policy mapping for access control
ACL policy for cscc's "GetConfigBlock" function
cscc/GetConfigBlock: /Channel/Application/Readers

ACL policy for cscc's "GetConfigTree" function
cscc/GetConfigTree: /Channel/Application/Readers

ACL policy for cscc's "SimulateConfigTreeUpdate" function
cscc/SimulateConfigTreeUpdate: /Channel/Application/Readers

#---Miscellanesous peer function to policy mapping for access control---#

ACL policy for invoking chaincodes on peer
peer/Propose: /Channel/Application/Writers

ACL policy for chaincode to chaincode invocation
peer/ChaincodeToChaincode: /Channel/Application/Readers

#---Events resource to policy mapping for access control###---#

ACL policy for sending block events
event/Block: /Channel/Application/Readers

ACL policy for sending filtered block events
event/FilteredBlock: /Channel/Application/Readers

Organizations lists the orgs participating on the application side of the
network.
Organizations:

Policies defines the set of policies at this level of the config tree
For Application policies, their canonical path is

/Channel/Application/<PolicyName>

Policies: &ApplicationDefaultPolicies

Readers:
Type: ImplicitMeta
Rule: "ANY Readers"
Writers:
Type: ImplicitMeta
Rule: "ANY Writers"

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

Admins:
Type: ImplicitMeta
Rule: "MAJORITY Admins”

Capabilities describes the application level capabilities, see the
dedicated Capabilities section elsewhere in this file for a full
description
Capabilities:
<<: *ApplicationCapabilities

HHHAHHHH R R R BB R R R R R R R R R
HEHAHHHHH
#

ORDERER

#
#
This section defines the values to encode into a config transaction or
genesis block for orderer related parameters.

#

HHHHHHHHHHHHHHHH R R R R R AR R R R R HHHHHHHHHHHHHH
HHHHHHHHH
Orderer: &OrdererDefaults

Orderer Type: The orderer implementation to start.
Available types are "solo" and "kafka".
OrdererType: solo

Addresses here is a nonexhaustive list of orderers the peers and clients can
connect to. Adding/removing nodes from this list has no impact on their
participation in ordering.
NOTE: In the solo case, this should be a one-item list.
Addresses:
- 127.0.0.1:7050

Batch Timeout: The amount of time to wait before creating a batch.
BatchTimeout: 2s

Batch Size: Controls the number of messages batched into a block.

The orderer views messages opaquely, but typically, messages may

be considered to be Fabric transactions. The 'batch’ is the group

of messages in the 'data’ field of the block. Blocks will be a few kb

larger than the batch size, when signatures, hashes, and other metadata
is applied.

BatchSize:

Max Message Count: The maximum number of messages to permit in a
batch. No block will contain more than this number of messages.
MaxMessageCount: 500

Absolute Max Bytes: The absolute maximum number of bytes allowed for
the serialized messages in a batch. The maximum block size is this value
plus the size of the associated metadata (usually a few KB depending

upon the size of the signing identities). Any transaction larger than

this value will be rejected by ordering. If the "kafka" OrdererType is

selected, set 'message.max.bytes' and 'replica.fetch.max.bytes' on

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

the Kafka brokers to a value that is larger than this one.
AbsoluteMaxBytes: 10 MB

Preferred Max Bytes: The preferred maximum number of bytes allowed

for the serialized messages in a batch. Roughly, this field may be considered
the best effort maximum size of a batch. A batch will fill with messages

until this size is reached (or the max message count, or batch timeout is

exceeded). If adding a new message to the batch would cause the batch to
exceed the preferred max bytes, then the current batch is closed and written
to a block, and a new batch containing the new message is created. If a

message larger than the preferred max bytes is received, then its batch

will contain only that message. Because messages may be larger than

preferred max bytes (up to AbsoluteMaxBytes), some batches may exceed

the preferred max bytes, but will always contain exactly one transaction.
PreferredMaxBytes: 2 MB

Max Channels is the maximum number of channels to allow on the ordering
network. When set to 0, this implies no maximum number of channels.
MaxChannels: 0

Kafka:
Brokers: A list of Kafka brokers to which the orderer connects. Edit
this list to identify the brokers of the ordering service.
NOTE: Use IP:port notation.
Brokers:
- kafka0:9092
- kafka1:9092
- kafka2:9092

EtcdRaft defines configuration which must be set when the "etcdraft”
orderertype is chosen.
EtcdRaft:
The set of Raft replicas for this network. For the etcd/raft-based
implementation, we expect every replica to also be an OSN. Therefore,
a subset of the host:port items enumerated in this list should be
replicated under the Orderer.Addresses key above.
Consenters:
- Host: raft0.example.com
Port: 7050
ClientTLSCert: path/to/ClientTLSCert0
ServerTLSCert: path/to/ServerTLSCert0
- Host: raft1.example.com
Port: 7050
ClientTLSCert: path/to/ClientTLSCert1
ServerTLSCert: path/to/ServerTLSCert1
- Host: raft2.example.com
Port: 7050
ClientTLSCert: path/to/ClientTLSCert2
ServerTLSCert: path/to/ServerTLSCert2

Options to be specified for all the etcd/raft nodes. The values here
are the defaults for all new channels and can be modified on a

per-channel basis via configuration updates.

Options:

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

TickInterval is the time interval between two Node.Tick invocations.
Ticklnterval: 500ms

ElectionTick is the number of Node.Tick invocations that must pass
between elections. That is, if a follower does not receive any

message from the leader of current term before ElectionTick has

elapsed, it will become candidate and start an election.

ElectionTick must be greater than HeartbeatTick.

ElectionTick: 10

HeartbeatTick is the number of Node.Tick invocations that must
pass between heartbeats. That is, a leader sends heartbeat

messages to maintain its leadership every HeartbeatTick ticks.
HeartbeatTick: 1

MaxInflightBlocks limits the max number of in-flight append messages
during optimistic replication phase.
MaxInflightBlocks: 5

SnapshotintervalSize defines number of bytes per which a snapshot is taken
SnapshotintervalSize: 20 MB

Organizations lists the orgs participating on the orderer side of the
network.
Organizations:

Policies defines the set of policies at this level of the config tree
For Orderer policies, their canonical path is
/Channel/Orderer/<PolicyName>
Policies:
Readers:
Type: ImplicitMeta
Rule: "ANY Readers"
Writers:
Type: ImplicitMeta
Rule: "ANY Writers"
Admins:
Type: ImplicitMeta
Rule: "MAJORITY Admins"
BlockValidation specifies what signatures must be included in the block
from the orderer for the peer to validate it.
BlockValidation:
Type: ImplicitMeta
Rule: "ANY Writers"

Capabilities describes the orderer level capabilities, see the
dedicated Capabilities section elsewhere in this file for a full
description
Capabilities:

<<: *OrdererCapabilities

B i

HHHAHHHHH
#

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

CHANNEL

#
#
This section defines the values to encode into a config transaction or
genesis block for channel related parameters.
#
HHHHHHHHHHHHHHHHHHHHHHHHHA AR AR AR BB R R R B R R R R R
HHHARHHHH
Channel: &ChannelDefaults
Policies defines the set of policies at this level of the config tree
For Channel policies, their canonical path is
/Channel/<PolicyName>
Policies:
Who may invoke the 'Deliver’ API
Readers:
Type: ImplicitMeta
Rule: "ANY Readers”
Who may invoke the 'Broadcast’ API
Writers:
Type: ImplicitMeta
Rule: "ANY Writers"
By default, who may modify elements at this config level
Admins:
Type: ImplicitMeta
Rule: "MAJORITY Admins”

Capabilities describes the channel level capabilities, see the
dedicated Capabilities section elsewhere in this file for a full
description
Capabilities:

<<: *ChannelCapabilities

B
HHHAHHHHH

PROFILES

Different configuration profiles may be encoded here to be specified as
parameters to the configtxgen tool. The profiles which specify consortiums

are to be used for generating the orderer genesis block. With the correct
consortium members defined in the orderer genesis block, channel creation
requests may be generated with only the org member names and a consortium
name.

HHHFEHHFHHFHEHHFE

HUHHHH YR HH BB HHH R HHHHRHH BB HHH R H Y HHRH B R H BB R HH SRR HH B HHH R HHH SRR H
HHHHHHHHH
Profiles:

SampleSingleMSPSolo defines a configuration which uses the Solo orderer,
and contains a single MSP definition (the MSP sampleconfig).
The Consortium SampleConsortium has only a single member, SampleOrg.
SampleSingleMSPSolo:

<<: *ChannelDefaults

Orderer:

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

<<: *OrdererDefaults
Organizations:
- *SampleOrg
Consortiums:
SampleConsortium:
Organizations:
- *SampleOrg

SampleSingleMSPKafka defines a configuration that differs from the
SampleSingleMSPSolo one only in that it uses the Kafka-based orderer.
SampleSingleMSPKafka:
<<: *ChannelDefaults
Orderer:
<<: *OrdererDefaults
OrdererType: kafka
Organizations:
- *SampleOrg
Consortiums:
SampleConsortium:
Organizations:
- *SampleOrg

SamplelnsecureSolo defines a configuration which uses the Solo orderer,
contains no MSP definitions, and allows all transactions and channel
creation requests for the consortium SampleConsortium.
SamplelnsecureSolo:
<<: *ChannelDefaults
Orderer:
<<: *OrdererDefaults
Consortiums:
SampleConsortium:
Organizations:

SamplelnsecureKafka defines a configuration that differs from the
SamplelnsecureSolo one only in that it uses the Kafka-based orderer.
SamplelnsecureKafka:
<<: *ChannelDefaults
Orderer:
OrdererType: kafka
<<: *OrdererDefaults
Consortiums:
SampleConsortium:
Organizations:

SampleDevModeSolo defines a configuration which uses the Solo orderer,
contains the sample MSP as both orderer and consortium member, and
requires only basic membership for admin privileges. It also defines
an Application on the ordering system channel, which should usually
be avoided.
SampleDevModeSolo:
<<:*ChannelDefaults
Orderer:
<<: *OrdererDefaults
Organizations:

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

- <<:*SampleOrg
Policies:
<<: *SampleOrgPolicies
Admins:
Type: Signature
Rule: "OR('SampleOrg.member')"
Application:
<<: *ApplicationDefaults
Organizations:
- <<:*SampleOrg
Policies:
<<: *SampleOrgPolicies
Admins:
Type: Signature
Rule: "OR('SampleOrg.member")"
Consortiums:
SampleConsortium:
Organizations:
- <<:*SampleOrg
Policies:
<<:*SampleOrgPolicies
Admins:
Type: Signature
Rule: "OR('SampleOrg.member’)"

SampleDevModeKafka defines a configuration that differs from the
SampleDevModeSolo one only in that it uses the Kafka-based orderer.
SampleDevModeKafka:
<<: *ChannelDefaults
Orderer:
<<: *OrdererDefaults
OrdererType: kafka
Organizations:
- <<:*SampleOrg
Policies:
<<: *SampleOrgPolicies
Admins:
Type: Signature
Rule: "OR('SampleOrg.member")"
Application:
<<: *ApplicationDefaults
Organizations:
- <<: *SampleOrg
Policies:
<<: *SampleOrgPolicies
Admins:
Type: Signature
Rule: "OR('SampleOrg.member')"
Consortiums:
SampleConsortium:
Organizations:
- <<: *SampleOrg
Policies:
<<: *SampleOrgPolicies

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

Admins:
Type: Signature
Rule: "OR('SampleOrg.member")"

SampleSingleMSPChannel defines a channel with only the sample org as a
member. It is designed to be used in conjunction with SampleSingleMSPSolo
and SampleSingleMSPKafka orderer profiles. Note, for channel creation
profiles, only the 'Application’ section and consortium # name are
considered.
SampleSingleMSPChannel:
Consortium: SampleConsortium
Application:
<<: *ApplicationDefaults
Organizations:
- *SampleOrg

SampleDevModeEtcdRaft defines a configuration that differs from the
SampleDevModeSolo one only in that it uses the etcd/raft-based orderer.
SampleDevModeEtcdRaft:
<<: *ChannelDefaults
Orderer:
<<: *OrdererDefaults
OrdererType: etcdraft
Organizations:
- <<:*SampleOrg
Policies:
<<: *SampleOrgPolicies
Admins:
Type: Signature
Rule: "OR('SampleOrg.member’)
Application:
<<: *ApplicationDefaults
Organizations:
- <<:*SampleOrg
Policies:
<<:*SampleOrgPolicies
Admins:
Type: Signature
Rule: "OR('SampleOrg.member")
Consortiums:
SampleConsortium:
Organizations:
- <<:*SampleOrg
Policies:
<<: *SampleOrgPolicies
Admins:
Type: Signature
Rule: "OR('SampleOrg.member')"

core.yaml|
HHHHHHHHHHHHHHHHHHHHHHHHHA AR AR AR AR BB R R R BB R R R R RS

HHHAHAHH
#

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

Peer section

#

HUHHHH YR HH BB HH BB HHHHRHH BB HHH R HHHHRH YR H BB R HH SRR HH R HH R HHHHRHH
HHHHHHH

peer:

The Peer id is used for identifying this Peer instance.
id: jdoe

The networkld allows for logical seperation of networks
networkld: dev

The Address at local network interface this Peer will listen on.
By default, it will listen on all network interfaces
listenAddress: 0.0.0.0:7051

The endpoint this peer uses to listen for inbound chaincode connections.
If this is commented-out, the listen address is selected to be

the peer's address (see below) with port 7052

chaincodelListenAddress: 0.0.0.0:7052

The endpoint the chaincode for this peer uses to connect to the peer.

If this is not specified, the chaincodeListenAddress address is selected.
And if chaincodeListenAddress is not specified, address is selected from
peer listenAddress.

chaincodeAddress: 0.0.0.0:7052

When used as peer config, this represents the endpoint to other peers

in the same organization. For peers in other organization, see

gossip.externalEndpoint for more info.

When used as CLI config, this means the peer's endpoint to interact with
address: 0.0.0.0:7051

Whether the Peer should programmatically determine its address
This case is useful for docker containers.
addressAutoDetect: false

Setting for runtime.GOMAXPROCS(n). If n < 1, it does not change the
current setting
gomaxprocs: -1

Keepalive settings for peer server and clients
keepalive:
MinlInterval is the minimum permitted time between client pings.
If clients send pings more frequently, the peer server will
disconnect them
mininterval: 60s
Client keepalive settings for communicating with other peer nodes
client:
Interval is the time between pings to peer nodes. This must
greater than or equal to the mininterval specified by peer
nodes
interval: 60s
Timeout is the duration the client waits for a response from

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

peer nodes before closing the connection
timeout: 20s
DeliveryClient keepalive settings for communication with ordering
nodes.
deliveryClient:
Interval is the time between pings to ordering nodes. This must
greater than or equal to the mininterval specified by ordering
nodes.
interval: 60s
Timeout is the duration the client waits for a response from
ordering nodes before closing the connection
timeout: 20s

Gossip related configuration
gossip:
Bootstrap set to initialize gossip with.
This is a list of other peers that this peer reaches out to at startup.
Important: The endpoints here have to be endpoints of peers in the same
organization, because the peer would refuse connecting to these endpoints
unless they are in the same organization as the peer.
bootstrap: 127.0.0.1:7051

NOTE: orglLeader and uselLeaderElection parameters are mutual exclusive.
Setting both to true would result in the termination of the peer

since this is undefined state. If the peers are configured with

uselLeaderElection=false, make sure there is at least 1 peer in the

organization that its orglLeader is set to true.

Defines whenever peer will initialize dynamic algorithm for
"leader" selection, where leader is the peer to establish

connection with ordering service and use delivery protocol
to pull ledger blocks from ordering service. It is recommended to
use leader election for large networks of peers.
useLeaderElection: true

Statically defines peer to be an organization "leader”,

where this means that current peer will maintain connection
with ordering service and disseminate block across peers in
its own organization

orglLeader: false

Interval for membershipTracker polling
membershipTrackerinterval: 5s

Overrides the endpoint that the peer publishes to peers

in its organization. For peers in foreign organizations

see 'externalEndpoint’

endpoint:

Maximum count of blocks stored in memory

maxBlockCountToStore: 100

Max time between consecutive message pushes(unit: millisecond)
maxPropagationBurstLatency: 10ms

Max number of messages stored until a push is triggered to remote peers
maxPropagationBurstSize: 10

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

Number of times a message is pushed to remote peers
propagatelterations: 1
Number of peers selected to push messages to
propagatePeerNum: 3
Determines frequency of pull phases(unit: second)
Must be greater than digestWaitTime + responseWaitTime
pullinterval: 4s
Number of peers to pull from
pullPeerNum: 3
Determines frequency of pulling state info messages from peers(unit: second)
requestStatelnfolnterval: 4s
Determines frequency of pushing state info messages to peers(unit: second)
publishStatelnfolnterval: 4s
Maximum time a statelnfo message is kept until expired
statelnfoRetentionInterval:
Time from startup certificates are included in Alive messages(unit: second)
publishCertPeriod: 10s
Should we skip verifying block messages or not (currently not in use)
skipBlockVerification: false
Dial timeout(unit: second)
dialTimeout: 3s
Connection timeout(unit: second)
connTimeout: 2s
Buffer size of received messages
recvBuffSize: 20
Buffer size of sending messages
sendBuffSize: 200
Time to wait before pull engine processes incoming digests (unit: second)
Should be slightly smaller than requestWaitTime
digestWaitTime: 1s
Time to wait before pull engine removes incoming nonce (unit: milliseconds)
Should be slightly bigger than digestWaitTime
requestWaitTime: 1500ms
Time to wait before pull engine ends pull (unit: second)
responseWaitTime: 2s
Alive check interval(unit: second)
aliveTimelnterval: 5s
Alive expiration timeout(unit: second)
aliveExpirationTimeout: 25s
Reconnect interval(unit: second)
reconnectinterval: 25s
This is an endpoint that is published to peers outside of the organization.
If this isn't set, the peer will not be known to other organizations.
externalEndpoint:
Leader election service configuration
election:
Longest time peer waits for stable membership during leader election startup (unit:
econd)
startupGracePeriod: 15s
Interval gossip membership samples to check its stability (unit: second)
membershipSamplelnterval: 1s
Time passes since last declaration message before peer decides to perform leader el
ction (unit: second)
leaderAliveThreshold: 10s

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

Time between peer sends propose message and declares itself as a leader (sends de
laration message) (unit: second)
leaderElectionDuration: 5s

pvtData:

pullRetryThreshold determines the maximum duration of time private data correspo
ding for a given block

would be attempted to be pulled from peers until the block would be committed wi
hout the private data

pullRetryThreshold: 60s

As private data enters the transient store, it is associated with the peer's ledger's hei
ht at that time.

transientstoreMaxBlockRetention defines the maximum difference between the curr
nt ledger's height upon commit,

and the private data residing inside the transient store that is guaranteed not to be
urged.

Private data is purged from the transient store when blocks with sequences that are
multiples

of transientstoreMaxBlockRetention are committed.

transientstoreMaxBlockRetention: 1000

pushAckTimeout is the maximum time to wait for an acknowledgement from each p
er

at private data push at endorsement time.

pushAckTimeout: 3s

Block to live pulling margin, used as a buffer

to prevent peer from trying to pull private data

from peers that is soon to be purged in next N blocks.

This helps a newly joined peer catch up to current

blockchain height quicker.

btlPullMargin: 10

the process of reconciliation is done in an endless loop, while in each iteration recon
iler tries to

pull from the other peers the most recent missing blocks with a maximum batch size
limitation.

reconcileBatchSize determines the maximum batch size of missing private data that
will be reconciled in a

single iteration.

reconcileBatchSize: 10

reconcileSleeplinterval determines the time reconciler sleeps from end of an iteration
until the beginning

of the next reconciliation iteration.

reconcileSleepinterval: Tm

reconciliationEnabled is a flag that indicates whether private data reconciliation is e
able or not.

reconciliationEnabled: true

Gossip state transfer related configuration
state:
indicates whenever state transfer is enabled or not
default value is true, i.e. state transfer is active
and takes care to sync up missing blocks allowing
lagging peer to catch up to speed with rest network
enabled: true
checklInterval interval to check whether peer is lagging behind enough to

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

request blocks via state transfer from another peer.

checklinterval: 10s

responseTimeout amount of time to wait for state transfer response from
other peers

responseTimeout: 3s

batchSize the number of blocks to request via state transfer from another peer
batchSize: 10

blockBufferSize reflect the maximum distance between lowest and

highest block sequence number state buffer to avoid holes.

In order to ensure absence of the holes actual buffer size

is twice of this distance

blockBufferSize: 100

maxRetries maximum number of re-tries to ask

for single state transfer request

maxRetries: 3

TLS Settings
Note that peer-chaincode connections through chaincodeListenAddress is
not mutual TLS auth. See comments on chaincodeListenAddress for more info
tls:
Require server-side TLS
enabled: false
Require client certificates / mutual TLS.
Note that clients that are not configured to use a certificate will
fail to connect to the peer.
clientAuthRequired: false
X.509 certificate used for TLS server
cert:
file: tls/server.crt
Private key used for TLS server (and client if clientAuthEnabled
is set to true
key:
file: tls/server.key
Trusted root certificate chain for tls.cert
rootcert:
file: tls/ca.crt
Set of root certificate authorities used to verify client certificates
clientRootCAs:
files:
- tls/ca.crt
Private key used for TLS when making client connections. If
not set, peer.tls.key.file will be used instead
clientKey:
file:
X.509 certificate used for TLS when making client connections.
If not set, peer.tls.cert.file will be used instead
clientCert:
file:

Authentication contains configuration parameters related to authenticating
client messages
authentication:

the acceptable difference between the current server time and the

client's time as specified in a client request message

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

timewindow: 15m

Path on the file system where peer will store data (eg ledger). This
location must be access control protected to prevent unintended
modification that might corrupt the peer operations.
fileSystemPath: /var/hyperledger/production

BCCSP (Blockchain crypto provider): Select which crypto implementation or
library to use
BCCSP:
Default: SW
Settings for the SW crypto provider (i.e. when DEFAULT: SW)
SW:
TODO: The default Hash and Security level needs refactoring to be
fully configurable. Changing these defaults requires coordination
SHA2 is hardcoded in several places, not only BCCSP
Hash: SHA2
Security: 256
Location of Key Store
FileKeyStore:
#1f "", defaults to 'mspConfigPath'/keystore
KeyStore:
Settings for the PKCS#11 crypto provider (i.e. when DEFAULT: PKCS11)
PKCS11:
Location of the PKCS11 module library
Library:
Token Label
Label:
User PIN
Pin:
Hash:
Security:
FileKeyStore:
KeyStore:

Path on the file system where peer will find MSP local configurations
mspConfigPath: msp

|dentifier of the local MSP

Deployers need to change the value of the localMspld string.
In particular, the name of the local MSP ID of a peer needs

to match the name of one of the MSPs in each of the channel
that this peer is a member of. Otherwise this peer's messages
will not be identified as valid by other nodes.

localMspld: SampleOrg

CLI common client config options
client:
connection timeout
connTimeout: 3s

Delivery service related config
deliveryclient:

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

It sets the total time the delivery service may spend in reconnection
attempts until its retry logic gives up and returns an error
reconnectTotalTimeThreshold: 3600s

It sets the delivery service <-> ordering service node connection timeout
connTimeout: 3s

It sets the delivery service maximal delay between consecutive retries
reConnectBackoffThreshold: 3600s

Type for the local MSP - by default it's of type bccsp
localMspType: bcesp

Used with Go profiling tools only in none production environment. In
production, it should be disabled (eg enabled: false)
profile:

enabled: false

listenAddress: 0.0.0.0:6060

The admin service is used for administrative operations such as

control over logger levels, etc.

Only peer administrators can use the service.

adminService:
The interface and port on which the admin server will listen on.
If this is commented out, or the port number is equal to the port
of the peer listen address - the admin service is attached to the
peer's service (defaults to 7051).
#listenAddress: 0.0.0.0:7055

Handlers defines custom handlers that can filter and mutate
objects passing within the peer, such as:
Auth filter - reject or forward proposals from clients
Decorators - append or mutate the chaincode input passed to the chaincode
Endorsers - Custom signing over proposal response payload and its mutation
Valid handler definition contains:
- A name which is a factory method name defined in
core/handlers/library/library.go for statically compiled handlers
- library path to shared object binary for pluggable filters
Auth filters and decorators are chained and executed in the order that
they are defined. For example:
authFilters:
name: FilterOne
library: /opt/lib/filter.so

name: FilterTwo
decorators:

name: DecoratorOne
name: DecoratorTwo
library: /opt/lib/decorator.so
Endorsers are configured as a map that its keys are the endorsement system chaincodes
hat are being overridden.

HHIFHHFEHHFEHFHEHH

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

Below is an example that overrides the default ESCC and uses an endorsement plugin tha
has the same functionality

as the default ESCC.

If the 'library' property is missing, the name is used as the constructor method in the built
n library similar

to auth filters and decorators.

endorsers:

escc

name: DefaultESCC

library: /etc/hyperledger/fabric/plugin/escc.so

handlers:

authFilters:

name: DefaultAuth
name: ExpirationCheck # This filter checks identity x509 certificate expiration
decorators:
name: DefaultDecorator
endorsers:
escc:
name: DefaultEndorsement
library:
validators:
VSCC:
name: DefaultValidation
library:

library: /etc/hyperledger/fabric/plugin/escc.so

Number of goroutines that will execute transaction validation in parallel.

By default, the peer chooses the number of CPUs on the machine. Set this
variable to override that choice.

NOTE: overriding this value might negatively influence the performance of
the peer so please change this value only if you know what you're doing
validatorPoolSize:

The discovery service is used by clients to query information about peers,
such as - which peers have joined a certain channel, what is the latest
channel config, and most importantly - given a chaincode and a channel,
what possible sets of peers satisfy the endorsement policy.
discovery:
enabled: true
Whether the authentication cache is enabled or not.
authCacheEnabled: true
The maximum size of the cache, after which a purge takes place
authCacheMaxSize: 1000
The proportion (0 to 1) of entries that remain in the cache after the cache is purged du
to overpopulation
authCachePurgeRetentionRatio: 0.75
Whether to allow non-admins to perform non channel scoped queries.
When this is false, it means that only peer admins can perform non channel scoped qu
ries.
orgMembersAllowedAccess: false
HHHHHHHHHHHHHHHHHHHHHHHHHA AR AR AR B R R R R BB R R R R

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

HHHHHHHH

#

VM section

#

HHHUYHH YR H B H Y H BB H R P H BB H R HHHHRH R H R H B HHRH R H R H R H R H R H SR H RS
HHHHHHH

vm:

Endpoint of the vm management system. For docker can be one of the following in gene
al

unix:///var/run/docker.sock

http://localhost:2375

https://localhost:2376

endpoint: unix:///var/run/docker.sock

settings for docker vms
docker:
tls:
enabled: false
ca:
file: docker/ca.crt
cert:
file: docker/tls.crt
key:
file: docker/tls.key

Enables/disables the standard out/err from chaincode containers for
debugging purposes
attachStdout: false

Parameters on creating docker container.

Container may be efficiently created using ipam & dns-server for cluster
NetworkMode - sets the networking mode for the container. Supported
standard values are: "host’(default), bridge’, ipvlan’,'none".

Dns - a list of DNS servers for the container to use.

Note: "Privileged” 'Binds’ "Links™ and "PortBindings™ properties of

Docker Host Config are not supported and will not be used if set.

LogConfig - sets the logging driver (Type) and related options

(Config) for Docker. For more info,

https://docs.docker.com/engine/admin/logging/overview/

Note: Set LogConfig using Environment Variables is not supported.

hostConfig:
NetworkMode: host
Dns:
#-192.168.0.1
LogConfig:
Type: json-file
Config:
max-size: "50m"
max-file: "5"

Memory: 2147483648

HHHAHHHH R R HAHH R BB R R R R R R R R R
HHHAHAHH

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

#

Chaincode section

#

HUHHHH Y HHHH YRR HH SRR HHHRHH SRR PR H YRR YR HH SR HH SRR HH R HH R HH RS H
HHHHHHHH

chaincode:

The id is used by the Chaincode stub to register the executing Chaincode
ID with the Peer and is generally supplied through ENV variables
the "path’ form of ID is provided when installing the chaincode.
The ‘'name’ is used for all other requests and can be any string.
id:
path:
name:

Generic builder environment, suitable for most chaincode types
builder: $(DOCKER_NS)/fabric-ccenv:latest

Enables/disables force pulling of the base docker images (listed below)
during user chaincode instantiation.

Useful when using moving image tags (such as :latest)

pull: false

golang:
golang will never need more than baseos
runtime: $(BASE_DOCKER NS)/fabric-baseos:$(ARCH)-$(BASE_VERSION)

whether or not golang chaincode should be linked dynamically
dynamicLink: false

car:
car may need more facilities (JVM, etc) in the future as the catalog
of platforms are expanded. For now, we can just use baseos
runtime: $(BASE_ DOCKER NS)/fabric-baseos:$(ARCH)-$(BASE_VERSION)

java:
This is an image based on java:openjdk-8 with addition compiler
tools added for java shim layer packaging.
This image is packed with shim layer libraries that are necessary
for Java chaincode runtime.
runtime: $(DOCKER_NS)/fabric-javaenv:$(ARCH)-$(PROJECT VERSION)

node:
need node js engine at runtime, currently available in baseimage
but not in baseos
runtime: $(BASE_DOCKER NS)/fabric-baseimage:$(ARCH)-$(BASE VERSION)

Timeout duration for starting up a container and waiting for Register
to come through. 1sec should be plenty for chaincode unit tests
startuptimeout: 300s

Timeout duration for Invoke and Init calls to prevent runaway.

This timeout is used by all chaincodes in all the channels, including
system chaincodes.

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

Note that during Invoke, if the image is not available (e.g. being

cleaned up when in development environment), the peer will automatically
build the image, which might take more time. In production environment,
the chaincode image is unlikely to be deleted, so the timeout could be

reduced accordingly.

executetimeout: 30s

There are 2 modes: "dev" and "net".

In dev mode, user runs the chaincode after starting peer from
command line on local machine.

In net mode, peer will run chaincode in a docker container.
mode: net

keepalive in seconds. In situations where the communiction goes through a

proxy that does not support keep-alive, this parameter will maintain connection
between peer and chaincode.

A value <= 0 turns keepalive off

keepalive: 0

system chaincodes whitelist. To add system chaincode "myscc" to the
whitelist, add "myscc: enable" to the list below, and register in
chaincode/importsysccs.go
system:
cscc: enable
Iscc: enable
escc: enable
vscc: enable
gscc: enable

System chaincode plugins:
System chaincodes can be loaded as shared objects compiled as Go plugins.
See examples/plugins/scc for an example.
Plugins must be white listed in the chaincode.system section above.
systemPlugins:

example configuration:

- enabled: true

name: myscc

path: /opt/lib/myscc.so

invokableExternal: true

invokableCC2CC: true

Logging section for the chaincode container
logging:
Default level for all loggers within the chaincode container
level: info
Override default level for the 'shim' logger
shim: warning
Format for the chaincode container logs
format: '%{color}%{time:2006-01-02 15:04:05.000 MST} [%{module}] %{shortfunc} -> %{le
el:.4s} %{id:03x}%{color:reset} %{message}'

B i
HHHAHAHHH
#

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

Ledger section - ledger configuration encompases both the blockchain

and the state

#
HHHHHHHHHHHHHHHHHHHHHHHH AR AR R R R R R R R R R R R R RS H S
HHHHHHHH

ledger:
blockchain:

state:

stateDatabase - options are "goleveldb”, "CouchDB"

goleveldb - default state database stored in goleveldb.

CouchDB - store state database in CouchDB

stateDatabase: goleveldb

Limit on the number of records to return per query

totalQueryLimit: 100000

couchDBConfig:
It is recommended to run CouchDB on the same server as the peer, and
not map the CouchDB container port to a server port in docker-compose.
Otherwise proper security must be provided on the connection between
CouchDB client (on the peer) and server.
couchDBAddress: 127.0.0.1:5984
This username must have read and write authority on CouchDB
username:
The password is recommended to pass as an environment variable
during start up (eg CORE_LEDGER STATE_COUCHDBCONFIG_PASSWORD).
If it is stored here, the file must be access control protected
to prevent unintended users from discovering the password.
password:
Number of retries for CouchDB errors
maxRetries: 3
Number of retries for CouchDB errors during peer startup
maxRetriesOnStartup: 12
CouchDB request timeout (unit: duration, e.g. 20s)
requestTimeout: 35s
Limit on the number of records per each CouchDB query
Note that chaincode queries are only bound by totalQueryLimit.
Internally the chaincode may execute multiple CouchDB queries,
each of size internalQueryLimit.
internalQueryLimit: 1000
Limit on the number of records per CouchDB bulk update batch
maxBatchUpdateSize: 1000
Warm indexes after every N blocks.
This option warms any indexes that have been
deployed to CouchDB after every N blocks.
A value of 1 will warm indexes after every block commit,
to ensure fast selector queries.
Increasing the value may improve write efficiency of peer and CouchDB,
but may degrade query response time.
warmlIndexesAfterNBlocks: 1
Create the global changes system database
This is optional. Creating the global changes database will require
additional system resources to track changes and maintain the database
createGlobalChangesDB: false

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

history:
enableHistoryDatabase - options are true or false
Indicates if the history of key updates should be stored.
All history 'index’ will be stored in goleveldb, regardless if using
CouchDB or alternate database for the state.
enableHistoryDatabase: true

HHHHH S HHHHHHHHH AR AR AR R R R R R R R R R R H RS
HH#HHHHHH
#
Operations section
#
HHBHHBHHHHHHABHHBHHBHHBHH B R HHABHHBHHBHH B H AR H AR HABHHBHH B H AR AR AR H BT
H#HHHHHH
operations:

host and port for the operations server

listenAddress: 127.0.0.1:9443

TLS configuration for the operations endpoint
tls:

TLS enabled

enabled: false

path to PEM encoded server certificate for the operations server
cert:
file:

path to PEM encoded server key for the operations server
key:
file:

most operations service endpoints require client authentication when TLS
is enabled. clientAuthRequired requires client certificate authentication

at the TLS layer to access all resources.

clientAuthRequired: false

paths to PEM encoded ca certificates to trust for client authentication
clientRootCAs:
files:]

HHHHHHHH R R R R H AR R R R R R R R R
HAHAH AR
#
Metrics section
#
HHHAHHHH R R HAHH R BB R R R R R R R R R
HHHAHAHH
metrics:
metrics provider is one of statsd, prometheus, or disabled
provider: disabled

statsd configuration
statsd:

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

network type: tcp or udp
network: udp

statsd server address
address: 127.0.0.1:8125

the interval at which locally cached counters and gauges are pushed
to statsd; timings are pushed immediately
writelnterval: 10s

prefix is prepended to all emitted statsd metrics
prefix:

orderer.yaml

HHHAHHHH R R R R H R R R R R R R R R R
HHHAHHAHH

#

Orderer Configuration

#

- This controls the type and configuration of the orderer.
#

HHHHHHHHHHHHHHH R R R R R AR R R R R HHHHHHHHHHHHHH S
HHHHHHHHH
General:

Ledger Type: The ledger type to provide to the orderer.

Two non-production ledger types are provided for test purposes only:
- ram: An in-memory ledger whose contents are lost on restart.

- json: A simple file ledger that writes blocks to disk in JSON format.
Only one production ledger type is provided:

- file: A production file-based ledger.

LedgerType: file

Listen address: The IP on which to bind to listen.
ListenAddress: 127.0.0.1

Listen port: The port on which to bind to listen.
ListenPort: 7050

TLS: TLS settings for the GRPC server.
TLS:
Enabled: false
PrivateKey governs the file location of the private key of the TLS certificate.
PrivateKey: tls/server.key
Certificate governs the file location of the server TLS certificate.
Certificate: tls/server.crt
RootCAs:
- tls/ca.crt
ClientAuthRequired: false
ClientRootCAs:
Keepalive settings for the GRPC server.
Keepalive:

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

er

ServerMinlInterval is the minimum permitted time between client pings.
If clients send pings more frequently, the server will

disconnect them.

ServerMininterval: 60s

Serverinterval is the time between pings to clients.

Serverinterval: 7200s

ServerTimeout is the duration the server waits for a response from

a client before closing the connection.

ServerTimeout: 20s

Cluster settings for ordering service nodes that communicate with other ordering service
nodes

such as Raft based ordering service.

Cluster:

SendBufferSize is the maximum number of messages in the egress buffer.

Consensus messages are dropped if the buffer is full, and transaction

messages are waiting for space to be freed.

SendBufferSize: 10

ClientCertificate governs the file location of the client TLS certificate

used to establish mutual TLS connections with other ordering service nodes.
ClientCertificate:

ClientPrivateKey governs the file location of the private key of the client TLS certificate.
ClientPrivateKey:

The below 4 properties should be either set together, or be unset together.
If they are set, then the orderer node uses a separate listener for intra-cluster
communication. If they are unset, then the general orderer listener is used.

This is useful if you want to use a different TLS server certificates on the

client-facing and the intra-cluster listeners.

ListenPort defines the port on which the cluster listens to connections.

ListenPort:

ListenAddress defines the IP on which to listen to intra-cluster communication.
ListenAddress:

ServerCertificate defines the file location of the server TLS certificate used for intra-clus

communication.

ServerCertificate:

ServerPrivateKey defines the file location of the private key of the TLS certificate.
ServerPrivateKey:

Genesis method: The method by which the genesis block for the orderer
system channel is specified. Available options are "provisional”, "file":

#
#
#

- provisional: Utilizes a genesis profile, specified by GenesisProfile,
to dynamically generate a new genesis block.
- file: Uses the file provided by GenesisFile as the genesis block.

GenesisMethod: provisional

Genesis profile: The profile to use to dynamically generate the genesis
block to use when initializing the orderer system channel and

GenesisMethod is set to "provisional". See the configtx.yaml file for the
descriptions of the available profiles. Ignored if GenesisMethod is set to
"file".

GenesisProfile: SamplelnsecureSolo

Genesis file: The file containing the genesis block to use when
initializing the orderer system channel and GenesisMethod is set to

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

"file". Ignored if GenesisMethod is set to "provisional".
GenesisFile: genesisblock

LocalMSPDir is where to find the private crypto material needed by the
orderer. It is set relative here as a default for dev environments but

should be changed to the real location in production.

LocalMSPDir: msp

LocalMSPID is the identity to register the local MSP material with the MSP

manager. IMPORTANT: The local MSP ID of an orderer needs to match the MSP
ID of one of the organizations defined in the orderer system channel's

/Channel/Orderer configuration. The sample organization defined in the

sample configuration provided has an MSP ID of "SampleOrg".

LocalMSPID: SampleOrg

Enable an HTTP service for Go "pprof" profiling as documented at:
https://golang.org/pkg/net/http/pprof
Profile:

Enabled: false

Address: 0.0.0.0:6060

BCCSP configures the blockchain crypto service providers.
BCCSP:
Default specifies the preferred blockchain crypto service provider
to use. If the preferred provider is not available, the software
based provider ("SW") will be used.
Valid providers are:
- SW: a software based crypto provider
- PKCS11: a CA hardware security module crypto provider.
Default: SW

SW configures the software based blockchain crypto provider.
SW:
TODO: The default Hash and Security level needs refactoring to be
fully configurable. Changing these defaults requires coordination
SHAZ is hardcoded in several places, not only BCCSP
Hash: SHA2
Security: 256
Location of key store. If this is unset, a location will be
chosen using: 'LocalMSPDir'/keystore
FileKeyStore:
KeyStore:

Authentication contains configuration parameters related to authenticating
client messages
Authentication:

the acceptable difference between the current server time and the

client's time as specified in a client request message

TimeWindow: 15m

HHHHHH A HHHHHHHHH AR AR R R R R R R R R R RS
HH#HHHHHHH

#

SECTION: File Ledger

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

#

- This section applies to the configuration of the file or json ledgers.

#
HHHHHHHHHHHHHHHHHHHHHHHH AR AR R R R R R R R R R R R R RS H S
HHHHHHHHH

FileLedger:

Location: The directory to store the blocks in.

NOTE: If this is unset, a new temporary location will be chosen every time
the orderer is restarted, using the prefix specified by Prefix.

Location: /var/hyperledger/production/orderer

The prefix to use when generating a ledger directory in temporary space.
Otherwise, this value is ignored.
Prefix: hyperledger-fabric-ordererledger

HHHAHHHH R R R BB R R R R R R R R R
HEHAHHHHH

#

SECTION: RAM Ledger

#

- This section applies to the configuration of the RAM ledger.
#

HHHHHHHH R R R R H AR R R R R R R R R R
HHHAHHHHH

RAMLedger:

History Size: The number of blocks that the RAM ledger is set to retain.

WARNING: Appending a block to the ledger might cause the oldest block in
the ledger to be dropped in order to limit the number total number blocks
to HistorySize. For example, if history size is 10, when appending block

10, block 0 (the genesis block!) will be dropped to make room for block 10.
HistorySize: 1000

HHHHHHHHHHHHHHHHHHHHHHHHHA AR AR AR BB R R BB R R R RS
HHHHHHHHH

#

SECTION: Kafka

#

- This section applies to the configuration of the Kafka-based orderer, and

its interaction with the Kafka cluster.

#

HHHHHHH R HHHHHHHHHHHHH AR AR AR B BB R BB BB R R R R R R BB R R R RS
H#HHHHHHH

Kafka:

Retry: What do if a connection to the Kafka cluster cannot be established,
or if a metadata request to the Kafka cluster needs to be repeated.
Retry:
When a new channel is created, or when an existing channel is reloaded
(in case of a just-restarted orderer), the orderer interacts with the
Kafka cluster in the following ways:
1. It creates a Kafka producer (writer) for the Kafka partition that
corresponds to the channel.

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

2. It uses that producer to post a no-op CONNECT message to that
partition
3. It creates a Kafka consumer (reader) for that partition.
If any of these steps fail, they will be re-attempted every
<ShortInterval> for a total of <ShortTotal>, and then every
<Longlnterval> for a total of <LongTotal> until they succeed.
Note that the orderer will be unable to write to or read from a
channel until all of the steps above have been completed successfully.
ShortInterval: 5s
ShortTotal: 10m
LonglInterval: 5m
LongTotal: 12h
Affects the socket timeouts when waiting for an initial connection, a
response, or a transmission. See Config.Net for more info:
https://godoc.org/github.com/Shopify/sarama#Config
NetworkTimeouts:
DialTimeout: 10s
ReadTimeout: 10s
WriteTimeout: 10s
Affects the metadata requests when the Kafka cluster is in the middle
of a leader election.See Config.Metadata for more info:
https://godoc.org/github.com/Shopify/sarama#Config
Metadata:
RetryBackoff: 250ms
RetryMax: 3
What to do if posting a message to the Kafka cluster fails. See
Config.Producer for more info:
https://godoc.org/github.com/Shopify/sarama#Config
Producer:
RetryBackoff: 100ms
RetryMax: 3
What to do if reading from the Kafka cluster fails. See
Config.Consumer for more info:
https://godoc.org/github.com/Shopify/sarama#Config
Consumer:
RetryBackoff: 2s
Settings to use when creating Kafka topics. Only applies when
Kafka.Version is v0.10.1.0 or higher
Topic:
The number of Kafka brokers across which to replicate the topic
ReplicationFactor: 3
Verbose: Enable logging for interactions with the Kafka cluster.
Verbose: false

TLS: TLS settings for the orderer's connection to the Kafka cluster.
TLS:

Enabled: Use TLS when connecting to the Kafka cluster.
Enabled: false

PrivateKey: PEM-encoded private key the orderer will use for
authentication.
PrivateKey:
As an alternative to specifying the PrivateKey here, uncomment the

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

following "File" key and specify the file name from which to load the
value of PrivateKey.
#File: path/to/PrivateKey

Certificate: PEM-encoded signed public key certificate the orderer will
use for authentication.
Certificate:
As an alternative to specifying the Certificate here, uncomment the
following "File" key and specify the file name from which to load the
value of Certificate.
#File: path/to/Certificate

RootCAs: PEM-encoded trusted root certificates used to validate
certificates from the Kafka cluster.
RootCAs:
As an alternative to specifying the RootCAs here, uncomment the
following "File" key and specify the file name from which to load the
value of RootCAs.
#File: path/to/RootCAs

SASLPlain: Settings for using SASL/PLAIN authentication with Kafka brokers
SASLPlain:

Enabled: Use SASL/PLAIN to authenticate with Kafka brokers

Enabled: false

User: Required when Enabled is set to true

User:

Password: Required when Enabled is set to true

Password:

Kafka protocol version used to communicate with the Kafka cluster brokers
(defaults to 0.10.2.0 if not specified)
Version:

B i
HHHAHHHHH

#

Debug Configuration

#

- This controls the debugging options for the orderer
#

HHHAHHHH R R HAHH R BB R R R R R R R R R
HEHAHHHHH

Debug:

BroadcastTraceDir when set will cause each request to the Broadcast service
for this orderer to be written to a file in this directory
BroadcastTraceDir:

DeliverTraceDir when set will cause each request to the Deliver service
for this orderer to be written to a file in this directory
DeliverTraceDir:

HHHAHHHH R R HAHH R BB R R R R R R R R R
HEHAHHHHH

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

#
Operations Configuration
#
- This configures the operations server endpoint for the orderer
#
HHHHHHHHHHHHHHHHHHHHHHHHHA AR AR AR BB R R R B R R R R R
HHHARHHHH
Operations:
host and port for the operations server
ListenAddress: 127.0.0.1:8443

TLS configuration for the operations endpoint
TLS:

TLS enabled

Enabled: false

Certificate is the location of the PEM encoded TLS certificate
Certificate:

PrivateKey points to the location of the PEM-encoded key
PrivateKey:

Most operations service endpoints require client authentication when TLS
is enabled. ClientAuthRequired requires client certificate authentication

at the TLS layer to access all resources.

ClientAuthRequired: false

Paths to PEM encoded ca certificates to trust for client authentication
ClientRootCAs: []

HHHHHHH R HHHHHHHHHHHH AR AR AR BB R R BB BB R R R R R BB R R R RS
H#HHHHHHH

#

Metrics Configuration

#

- This configures metrics collection for the orderer
#

HHH AR B HHH AR R HHHHH R R HHH AR B HHH AR R HHHA R R HH R R HHH AR HH AR R AR AR R
HH#HHHHHHH
Metrics:

The metrics provider is one of statsd, prometheus, or disabled

Provider: disabled

The statsd configuration
Statsd:
network type: tcp or udp
Network: udp

the statsd server address
Address: 127.0.0.1:8125

The interval at which locally cached counters and gauges are pushed

to statsd; timings are pushed immediately
Writelnterval: 30s

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

The prefix is prepended to all emitted statsd metrics
Prefix:

HHHHHHHHHHHHHHHHHHHHHHHHHA AR AR AR BB R R R BB R R R R RS
HHHHHHHHH
#

Consensus Configuration

#

#

- This section contains config options for a consensus plugin. It is opaque

to orderer, and completely up to consensus implementation to make use of.
#

HHHARBHHH AR B HHHHH R R HHH AR B HHH AR R HHA R R H AR R R HHH AR R HHH AR R AR R H AR R
HHHAHHHHH
Consensus:

The allowed key-value pairs here depend on consensus plugin. For etcd/raft,

we use following options:

WALDiIr specifies the location at which Write Ahead Logs for etcd/raft are
stored. Each channel will have its own subdir named after channel ID.
WALDir: /var/hyperledger/production/orderer/etcdraft/wal

SnapDir specifies the location at which snapshots for etcd/raft are

stored. Each channel will have its own subdir named after channel ID.
SnapDir: /var/hyperledger/production/orderer/etcdraft/snapshot

JR3Z§EE: Hyperledger Fabric-1.4.1 #(ECE (configtx.yaml,core.yaml,orderer.yaml)

https://ld246.com/article/1608532362676

