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Description:
Say you have an array for which the i thelement is the price of a given stock on day i .

If you were only permitted to complete at most one transaction (i.e., buy one and sell one sha
e of the stock), design an algorithm to find the maximum profit.

Note that you cannot sell a stock before you buy one.
Example 1:

Input: [7,1,5,3,6,4]

Output: 5

Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Not 7-1 = 6, as selling price needs to be larger than buying price.

Example 2:
Input: [7,6,4,3,1]

Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.
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class Solution {
public:
int maxProfit(vector<int>& prices) {
if(prices.empty()) return O;
int ret = 0, minPrice = prices[0];
for(int i=1; i<prices.size(); i++) {
if(prices[i]<minPrice)
minPrice = prices]i];
else
ret = max(prices[i]-minPrice,ret);
}

return ret;
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