(=

==
JR
Sl :
AN :

LeetCode] 121. Best Time to Buy a
nd Sell Stock

Hanseltu
https://Id246.com/article/1553523815765
T

ER-HRELIHE= 4.0 EfR (CCBY-SA 4.0)

https://ld246.com/member/Hanseltu
https://ld246.com/article/1553523815765
https://ld246.com
https://creativecommons.org/licenses/by-sa/4.0/

Description:
Say you have an array for which the i thelement is the price of a given stock on day i .

If you were only permitted to complete at most one transaction (i.e., buy one and sell one sha
e of the stock), design an algorithm to find the maximum profit.

Note that you cannot sell a stock before you buy one.
Example 1:

Input: [7,1,5,3,6,4]

Output: 5

Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Not 7-1 = 6, as selling price needs to be larger than buying price.

Example 2:
Input: [7,6,4,3,1]

Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

iR XTRERE, EXHEPREAEE, REORHRZEAEEFTHNEAXEN FRMZATR
B TIR. FIAEN AN KRIMBEZENG EZR]EYN, RARTEEAERIER/IMEZA]
BRI BSURR, EmEENREREREFT— N HaiR/IMEminPrice, XHEEREFRIEXITRIRT,
inPricesREiZBIRIR/IME. BI, BHEERT

o U prices[i] < minPrice, MIEFrminPrice = prices[i]l. FEIZKRAMNIZEH.

e WNRprices|i] >= minPrice, MIZKAIRERFIFAISELAE, T+&prices[i] - minPrice, F5=Aa1
B R ARELR R,

C++1U1g

class Solution {
public:
int maxProfit(vector<int>& prices) {
if(prices.empty()) return O;
int ret = 0, minPrice = prices[0];
for(int i=1; i<prices.size(); i++) {
if(prices[i]<minPrice)
minPrice = prices]i];
else
ret = max(prices[i]-minPrice,ret);
}

return ret;

[RSZ5ERE: [H LeetCode] 121. Best Time to Buy and Sell Stock

https://ld246.com/article/1553523815765

1z{7Hd8): 8ms
={THE: 9.5M

BariEE: [5H LeetCode] 121. Best Time to Buy and Sell Stock

https://ld246.com/article/1553523815765

