
链滴

The most common optimization algorith
ms

　　作者：jasonhaven

原文链接：https://ld246.com/article/1534080069263

来源网站：链滴

许可协议：署名-相同方式共享 4.0 国际 (CC BY-SA 4.0)

https://ld246.com
https://ld246.com/member/jasonhaven
https://ld246.com/article/1534080069263
https://ld246.com
https://creativecommons.org/licenses/by-sa/4.0/

The most common optimization algorithms
● paper

1.Gradient Descent
● Gradient descent is a way to minimize an objective function J(θ) parameterized by a model
s parameters θ ∈ R by updating the parameters in the opposite direction of the gradient of
he objective function ∇θJ(θ).

● The learning rate η determines the size of the steps we take to reach a (local) minimum

● In other words, we follow the direction of the slope of the surface created by the objective f
nction downhill until we reach a valley.

● there are **three variants **of gradient descent, which differ in how much data we use to
compute the gradient of the obejctive function. Depending on the amount of data, we make
a trade-off between the accuracy of the parameter update and the time it takes to perform a
 update.

1.1BGD

● Batch gradient descent

● θ = θ − η · ∇θJ(θ)

● computes the gradient of the cost function to the parameters θ for the entire training d
taset

● Batch gradient descent is guaranteed to **converge to the global minimum for convex error
surfaces **and to a local minimum for non-convex surfaces.

● very slow , is intractable for datasets that do not fit in memory,not allow us to update our
model online,e, i.e. with new examples on-the-fly.

●

In code, batch gradient descent looks something like this:
for i in range (nb_epochs):
 params_grad = evaluate_gradient (loss_function , data , params)
 params = params - learning_rate * params_grad

1.2SGD

● Stochastic gradient descent

● θ = θ − η · ∇θJ(θ; x(i); y(i))

● Stochastic gradient descent (SGD) in contrast performs a parameter update for each trainin
 example

(x(i),y(i))

● enables it to jump to new and potentially better local minima

● faster,can be used to learn online.

●

原文链接：The most common optimization algorithms

https://arxiv.org/pdf/1609.04747.pdf
https://ld246.com/article/1534080069263

#Its code fragment simply adds a loop over the training examples and evaluates the gradient
w.r.t. each example.
for i in range (nb_epochs):
 np . random . shuffle (data)#Note that we shuffle the training data at every epoch
 for example in data :
 params_grad = evaluate_gradient (loss_function , example , params)
 params = params - learning_rate * params_grad

1.3 Mini-batch gradient descent

● Mini-batch gradient descent finally takes the best of both worlds and performs an update f
r every

mini-batch of n training examples

● θ = θ − η · ∇θJ(θ; x(i:i+n); y(i:i+n))

● a) reduces the variance of the parameter updates, which can lead to more stable convergen
e

● b) can make use of highly optimized matrix optimizations common to state-of-the-art deep
earning libraries that make computing the gradient w.r.t. a mini-batch very efficient

●

#In code, instead of iterating over examples, we now iterate over mini-batches of size 50:
for i in range (nb_epochs):
 np . random . shuffle (data)
 for batch in get_batches (data , batch_size =50):
 params_grad = evaluate_gradient (loss_function , batch , params)
 params = params - learning_rate * params_grad

● does not guarantee good convergence

Challenges

1. Choosing a proper learning rate can be difficult.

2. Learning rate schedules try to adjust the learning rate during training, reducing the learnin
 rate according to a pre-defined schedule or when the change in objective between epochs fal
s below a threshold

3. the same learning rate applies to all parameter updates

4. Another key challenge of minimizing highly non-convex error functions common for neural
networks is avoiding getting trapped in their numerous suboptimal local minima.

2.Momentum(动量)
● SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply i
 one

dimension than in another , which are common around local optima

● Momentum is a method that helps accelerate SGD in the relevant direction and dampens
（抑制）oscillations, It does this by adding a fraction γ of the update vector of the past time s
ep to the current update vector.

原文链接：The most common optimization algorithms

https://ld246.com/article/1534080069263

●

vt = γvt−1 + η∇θJ(θ) The momentum term γ is usually set to 0.9 or a similar value.

θ = θ − vt

● The momentum term increases for dimensions whose gradients point in the same directions
and reduces updates for dimensions whose gradients change directions. As a result, we gain f
ster convergence and reduced oscillation.

● 动量方法主要是为了解决Hessian矩阵病态条件问题（直观上讲就是梯度高度敏感于参数空间的某
方向）。

● ∇

3. NAG(牛顿动量)
● Nesterov Accelerated Gradient

● NAG is a way to give our momentum term this kind of prescience.

●

vt = γ vt−1 + η∇θJ(θ − γvt−1)

θ = θ − vt

● Nesterov是 Momentum的变种。

● 与Momentum唯一区别就是，计算梯度的不同，Nesterov先用当前的速度v更新一遍参数，在用
新的临时参数计算梯度。

● 相当于添加了矫正因子的Momentum。

4.Adagrad
● It adapts the learning rate to the parameters, performing larger updates for infrequent and
maller updates for frequent parameters.

● it is well-suited for dealing with sparse data.

●

\theta_{t+1}=\theta_t- \frac{\eta}{\sqrt{G_t+\epsilon}}\nabla_{\theta_t} J(\theta)

● Adagrad uses a different learning rate for every parameter θi at every time step t

● In its update rule, Adagrad modifies the general learning rate η at each time step t for every
parameter

θi based on the past gradients that have been computed for θi

● **main benefit ** is it eliminates the need to manually tune the learning rate.Most impleme
tations use a default value of 0.01 and leave it at that.

● main weakness is its accumulation of the squared gradients in the denominator,Since every
added term is positive, the accumulated sum keeps growing during training. This in turn caus
s the learning rate to shrink and eventually become infinitesimally small, at which point the al
orithm is no longer able to acquire additional knowledge.

原文链接：The most common optimization algorithms

http://blog.csdn.net/bvl10101111/article/details/72615621
https://ld246.com/article/1534080069263

5.Adadelta
● Adadelta is an extension of Adagrad that seeks to reduce its aggressive, monotonically dec
easing

learning rate. Instead of accumulating all past squared gradients, Adadelta restricts the wind
w of accumulated past gradients to some fixed size w.

● With Adadelta, we do not even need to set a default learning rate, as it has been eliminated
from the

update rule.

●

∆θt = (−(RMS[∆θ]t−1)/(RMS[g]t))*gt

θt+1 = θt + ∆θt

RMSprop
● RMSprop is an unpublished, adaptive learning rate method proposed by Geoff Hinton in L
cture 6e

of his Coursera Class

● RMSprop and Adadelta have both been developed independently around the same time st
mming from the need to resolve Adagrad’s radically diminishing learning rates. RMSprop in
act is identical to the first update vector of Adadelta

● RMSprop as well divides the learning rate by an exponentially decaying average of squared
gradients.

● Hinton suggests γ to be set to 0.9, while a good default value for the learning rate η is 0.001

Adam
● Adaptive Moment Estimation

● is another method that computes adaptive learning rates for each parameter.

● suggest : alpha=0.001、beta1=0.9、beta2=0.999 和 epsilon=10E−8

● The authors propose default values of 0.9 for β1, 0.999 for β2, and 10−8 for ∇r ∇. They show
mpirically

that Adam works well in practice and compares favorably to other adaptive learning-method
lgorithms.

How to Choose
So, which optimizer should you use?

If your input data is sparse, then you likely achieve the best results using one of the adaptiv
 learning-rate methods. An additional benefit is that you will not need to tune the learning r
te but will likely achieve the best results with the default value.

In summary, RMSprop is an extension of Adagrad that deals with its radically diminishing l

原文链接：The most common optimization algorithms

https://ld246.com/article/1534080069263

arning rates . It is identical to Adadelta, except that Adadelta uses the RMS of parameter upd
tes in the numerator update rule. Adam, finally, adds bias-correction and momentum to R
Sprop. Insofar, RMSprop, Adadelta, and Adam are very similar algorithms that do well in simil
r circumstances.

Kingma et al. [10] show that its bias-correction helps Adam slightly outperform RMSprop tow
rds

the end of optimization as gradients become sparser. Insofar, Adam might be the best over
ll choice.

Interestingly, many recent papers use vanilla SGD without momentum and a simple learning r
te annealing schedule. As has been shown, SGD usually achieves to find a minimum, but it
ight **take significantly longer ** than with some of the optimizers, is much more reliant on
 robust initialization and annealing schedule , and may get stuck in saddle points rather tha
 local minima.

Consequently, if you care about fast convergence and train a deep or complex neural net
ork, you should choose one of the adaptive learning rate methods.

原文链接：The most common optimization algorithms

https://ld246.com/article/1534080069263

