_
i

(&3] CMake 1 Make Z|8JRY

{E&: lixiang0
[R5 https://Id246.com/article/1469082435014
SRR, HEE
el ER-tEESHEE 4.0 EfR (CC BY-SA 4.0)

fuy i

| S

https://ld246.com
https://ld246.com/member/lixiang0
https://ld246.com/article/1469082435014
https://ld246.com
https://creativecommons.org/licenses/by-sa/4.0/

<p>ANEHFHNE ISR, FTEHAIE CMake 1 Make ZEX I, FTXHELFIHXE

EPhBZ%.Eﬂﬁq%, REEEENRRNIRY., </p>

<nr>

<p>TNEEFEELS:

I4RFE A RBEER CMake 1 Make RIK—RRENE Y. BRIMA—RALNBHEHRE—EE

ERENIE LRI, (RFEIEERIMNE, (REEEZNEHIEN"CMakelists.txt" 34,

RMOZeELin{EA" cmake" " make”. RZAZRE BIIREER(FRBMAHAMESIAIEAHMS U

HEAFEZMNE, WEAVBMNIERTA? MHABRRAXMAINEERLR? Cmake 1 Make Z[EH

ARXBN? XBRREL? M) LAERRERIL?

ZESCIERR, BMZEERENAE. EEEMNZENAERER, XERELABRIEERIERE

APANFRIL, R ENZENXEIZET, BIERKEEEINRHA.

Make

INERT— MRS, FAIERERG, AR mFERmFIeIEI T, AT

%%ig)uaaiéé‘lﬂﬁ‘éﬁ’ﬂiﬁ "Make” B2—1"IR, BiE#aHiTiERIRERRE] G PIRRES SR
. <pr>

o “Make” TEEEEERMBENTEEER. BEE— UM "makefile” BISHRIBRLNEHE

{RAFER. XA T ATERYARTRRS S LA NI BB SRt B E. SRRE 7T —1MER,

ROZAEE— makefile 34, XFEAGAIREBEEA "Make” SAGEMZERNER. RESR

F18. MRFAEFERE, S EX—RYF, ANEHEX—RFNTE FRRRRER.

I ALEE "Make”

IFEE" make” H—NRER, EoILUESRIRAFIIEFILE(RRINAE, MARXFEMY TR
BARRUEHEIR, 8— T2EaeE CiMNFRARHIER, XHEEERESANMMERTE
. IXHEHAIEIEIXA makefile SMAHMIRE, 1L EASHINCRAIRHANXA makefile
4h, "Make” ZRBXHREZTHE BRI ELEB—YHHREEN., BEiNEEEHELIES
IRt TS, S— MRS SRR 5 — N RIS S R B 3RRT,

IOHEIR HFA I T RFFRI—/ N RBAER, SFHmFEMEFRIEREEMREN. BELt, 7=
MK T —/NBOBSERR S RHEEFFIT "Make” , BEASEFRFIENMER. BUNEH
LR E A (AKX L2 AR T RYRAS S AVARRID S, RESIE! "Make” ABIRTEMHHES
MNFRRFFRIES— N ERIEI Y, makefile STAFMRYIREE T HATR AT shell a5, 1XLE shell 5
BefBfanhimiEenr - B, ERERRF AT HUTIUY, ar BT, RIREMESIERMNINE, FE,
. Make MUNBRTHEE—NE, (ROAJULERSEHE— M, ERESIRGEEMM—LREE
FHEBRE T REAXMNERS.

CMake

nCMake s2#FSYEE Make, CMake 335l FABRFmIFER EmIFA HAVFRASFIE, SRR FIE
PRI miEes, (RAREEFERIARIFESEERENMEARFIEAYRG, (RAILIFRHER A IRES
ERXETEEDFES. CMake AE— RN BEIRFSIRBIERNINFERG<S. Eit, 8
ZIEBAMEH<S, tban $(CC).

OOOANSRARZAADRIEEE, BHEAE ML, MRIFRAEWX—], (REILABNTX—3857, —ARAYYRIE/
FARRRMRI M, BEX, UUREEMEMTF AT RIIER G 6<, EiARREsS, Bl
& & CMAKE_BUILD TYPE 5 "debug” , SxETERFEFRIEREHLE CMake: cmake -DCM
KE——BUILD——TYPE: STRING=Debug,

liCMake TS XNE S, @ '-fPIC’ fx& (POSITION_INDEPENDENT CODE Eff)
Eitt, ESREANIREREE CMake spSHsLI, 7 makefile SUFBAILL (@I(ER COMPILE_
LAGS SEEXRIBMN) . =X, CMake FEEME=77F (& OpenGL) SEMBIMEEINZE, <br

OO0DANSRIFEFERmIFRA, MWEIEETE SR, ENEFEESITTEA" make” . T
Make, FEHIT 2L F—, (FRBEEEMIRFEMNE (TLUBIEIRAYREERPEA cmake <
source_dir>, BAJLUBISAERA GUI 2 im) . FEIE—DEFRRY, REMRIEEAIRIFEARRY
AR EM, FMERFOLUEZBLE CMake — B8, B, CMake IRIBIFHNRFEEIRFESIE
RIBCARIIEER, S5, (FMEMRERARFRFTHRITEMRIEE,

OOOMREFEN GNU MRS, NRRAATX D, X—ERG T RS T IWE, 5%
TR ES, FTRER! FATTLUER Autotool REVE: CMake, HEATXFMAIRHR, FH

BESTHEEE: [ED1%] CMake #1 Make 28X E

https://ld246.com/article/1469082435014

2K Make fItRs, MEXFELE Autotool F=ERVEERT ., FHiIAJLIEZE CMake BBELL Make
FUEHT. Autoconf fERT—1MEERER, tHFRINSRS A XEEINETIEENA(SHT
W, BR, X{UNEREXRENFFARFE—/NDD. {ERERE, GNU ITRREEHFA T —RYIEMMN
BfERs, BF5e6k Autoconf FHIAZ GBI /E: GNU MEZRAGHEEENHMESE Autoconf, Automa
e, and Libtool.

o0 “"Make” FABERPHET , EPAERUHAIRARMAZIN. (Rl B CHMrERIBEEI(E,
BixXiGEReaE, CMake SR T IXMaE, EES5IER, Stk GNU WERFEEMNE: </p

BF4RE CMakelists.txt ZHRNESEEARIEMRE Z1ER. </Ii>

AMNAILAMER "Make” RHETRE,

37¥ZMp4Er=TH, Lkl Xcode, Eclipse, Visual Studio, etc.

lonCMake 5 Make SSEEEBLITR:

BaRMBEFaRRE,

Bal RS THE</Ii>

g|i>E§%1%SZ1¢ﬁi§i£§“—t$F§, PA—MEEFTRNAREE LA make BER S FERVAIER .
r>

onCMake AMNR “make” |, FILICEEESHR., NKIZKE, BIFEBRFRERE. WRIFX

E—NFEEEINNIRE, "Make” BEESTTHXEBHIIE.

<hr>

<p>THEHEARXAIZENRIERS:

CMake vs Make

loi0Programmers have been using CMake and Make for a long time now. When you join a big

company or start working on a project with a large codebase, there are all these builds that y

u need to take care of.You must have seen those “CMakelists.txt” files floating around. You

are supposed to run “cmake” and “make” commands on the terminal. A lot of people just

follow the instructions blindly, not really caring about why we need to do things in a certain

ay. What is this whole build process and why is it structured this way? What are the difference
between CMake and Make? Does it matter? Are they interchangeable?

0000As it turns out, they are quite different. It is important to understand the differences betwe

n them to make sure you don’ t get yourself in trouble. Before getting into the differences, le

" s first see what they are.

Make

0000The way in which we design a software system is that we first write code, then the compiler

compiles it and creates executable files. These executable files are the ones that carry out the

ctual task. “"Make” is a tool that controls the generation of executables and other non-sour

e files of a program from the program’ s source files.

000The “Make” tool needs to know how to build your program.It gets its knowledge of how

to build your program from a file called the “makefile” . This makefile lists each of the non-s

urce files and how to compute it from other files. When you write a program, you should writ
a makefile for it, so that it is possible to use “Make” to build and install the program.Simple

stuff! If you didn” t understand it, go back and read the paragraph again because it’ s impor

ant for the next part.

Why do we need “Make” ?

l000The reason we need “Make” is because it enables the end user to build and install your

ackage without knowing the details of how it" s done. Every project comes with its own rules

and nuances, and it can get quite painful every time you have a new collaborator. That' s the

eason we have this makefile.The details of the build process are actually recorded in the make

ile that you supply. “Make” figures out automatically which files it needs to update, based

n which source files have changed.It also automatically determines the proper order for updat

ng the files, in case one non-source file depends on another non-source file.

i0iRecompiling the entire program every time we change a small part of the system would be

inefficient.Hence, if you change a few source files and then run “Make” , it doesn’ t recompi

JESTEEE: [EiE] CMake 1 Make Z[@H9X 3

https://ld246.com/article/1469082435014

e the whole thing. It updates only those non-source files that depend directly or indirectly on
he source files that you changed.Pretty neat! “Make” is not limited to any particular langua
e. For each non-source file in the program, the makefile specifies the shell commands to com
ute it. These shell commands can run a compiler to produce an object file, the linker to produ
e an executable, ar to update a library, Makeinfo to format documentation, etc. “Make” is no
limited to just building a package either. You can also use “Make” to control installing or u
installing a package, generate tags tables for it, or anything else you want to do often enough
to make it worth while writing down how to do it.

CMake

mo0CMake stands for Cross-platform Make. CMake recognizes which compilers to use for a gi
en kind of source.In case you didn’ t know, you can’ t use the same compiler to build all the
different kinds of sources. You can do this manually every time you want to build your project,
but it would be tedious and painful. CMake invokes the right sequence of commands for each
type of target. Therefore, there is no explicit specification of commands like $(CC).

000For coding junkies who really want the gory details, read on. If you are not into all that, you
can skip to the next section. All the usual compiler/linker flags dealing with the inclusion of h
ader files, libraries, etc are replaced by platform independent and build system independent
ommands.Debugging flags are included by either setting the variable CMAKE_BUILD_TYPE to
"Debug” , or by passing it to CMake when invoking the program:cmake -DCMAKE_BUILD T
PE:STRING= Debug.

monCMake also offers the platform independent inclusion of the ‘-fPIC' flag (via the POSITI
N_INDEPENDENT_CODE property) and many others. Still, more obscure settings can be impl
mented by hand in CMake just as well as in a Makefile (by using COMPILE_FLAGS and similar
roperties). Of course CMake really starts to shine when third party libraries (like OpenGL) are i
cluded in a portable manner.

What is the difference?

0000The build process has one step if you use a Makefile, namely typing “make” at the com
and line.For CMake, there are two steps: First, you need to setup your build environment (eith
r by typing cmake <source_dir> in your build directory or by running some GUI client).Th
s creates a makefile or something equivalent, depending on the build system of your choice (e
g. Make on *nix, VC++ or MinGW on Windows, etc). The build system can be passed to CMak
as a parameter. However, CMake makes reasonable default choices depending on your syst
m configuration. Second, you perform the actual build in the selected build system.

l000We are going to jump into the GNU build system territory here.If you are not familiar with
hat, this paragraph might look like jibber-jabber to you. Alright, now that | have given the sta
utory warning, let’ s move on!We can compare CMake with Autotools. When we do that, we
an see the shortcomings of Make, and they form the reason for the creation of Autotools. We
can also see the obvious advantages of CMake over Make. Autoconf solves an important prob
em i.e. reliable discovery of system-specific build and runtime information. But this is only a
mall part in the development of portable software. To this end, the GNU project has develop
d a suite of integrated utilities to finish the job Autoconf started: the GNU build system, whos
most important components are Autoconf, Automake, and Libtool.

oo “Make” can’ tdo that, at least not without modifying it anyway!You can make it do all t
at stuff but it would take a lot of time maintaining it across platforms. CMake solves the same
problem, but at the same time, it has a few advantages over the GNU Build System:</p>

The language used to write CMakelLists.txt files is readable and easier to understand.
It doesn’ tonly rely on “Make” to build the project.
It supports multiple generators like Xcode, Eclipse, Visual Studio, etc.

<p>000When comparing CMake with Make, there are several advantages of using Cmake: </
>

Cross platform discovery of system libraries.

BESTHEEE: [ED1%] CMake #1 Make 28X E

https://ld246.com/article/1469082435014

Easier to compile your files into a shared library in a platform agnostic way, and in general

easier to use than make.
Automatic discovery and configuration of the toolchain.

<p>0000CMake does more than just “make” , so it can be more complex. In the long run, it’

better to learn how to use it. If you have just a small project on only one platform, then may
e "Make"” can do a better job.</p>

JESTEEE: [EiE] CMake 1 Make Z[@H9X 3

https://ld246.com/article/1469082435014

