_
i

Concurrency model and Event Loop

{E&: amlurs
[ESZ4EE: https://Id246.com/article/1437220490910
SRR, S5
Ay BER-1EESNHEE 4.0 Efx (CC BY-SA 4.0)

https://ld246.com
https://ld246.com/member/amIurs
https://ld246.com/article/1437220490910
https://ld246.com
https://creativecommons.org/licenses/by-sa/4.0/

<h2 id="Event_loop">Event loop</h2>
<p>The <code>event loop</code> got its name because of how it's usually implemented, w
ich usually resembles:</p>
<pre class="prettyprint">while(queue.waitForMessage()){

queue.processNextMessage();
}</pre>
<pre class="brush: js language-js" data-number=
="token keyword"> </code></pre>
<p><code>queue.waitForMessage </code> waits synchronously for a message to arrive if th
re is none currently.</p>
<h3 id="Run-to-completion”>"Run-to-completion”</h3>
<p>Each message is processed completely before any other message is processed. This offers
some nice properties when reasoning about your program, including the fact that whenever a
function runs, it cannot be pre-empted and will run entirely before any other code runs (and
an modify data the function manipulates). This differs from C, for instance, where if a function
runs in a thread, it can be stopped at any point to run some other code in another thread.</
>
<p> ERELE1THS, FREIMNUER, B AT IR DIETT </p>
<p>A downside of this model is that if a message takes too long to complete, the web applic
tion is unable to process user interactions like click or scroll. The browser mitigates this with t
e "a script is taking too long to run" dialog. A good practice to follow is to make message pro
essing short and if possible cut down one message into several messages.</p>
<p> ERFANREAEFI THIEIT K, 4—:%,£1HE{1LJHI‘]F“ RN R
Kf{¥</p>
<p> FTLMESH BB REN 1 Z R ERVES </p>
<h3 id="Adding_messages">Adding messages</h3>
<p>In web browsers, messages are added any time an event occurs and there is an event list
ner attached to it. If there is no listener, the event is lost. So a click on an element with a click
vent handler will add a message--likewise with any other event.</p>
<p>Calling <code> <a href="https://developer.mozilla.org/en-US/docs/Web/API/WindowTi
ers.setTimeout" title="/en-US/docs/window.setTimeout">setTimeout </code> will add a
message to the queue after the time passed as second argument. If there is no other message
in the queue, the message is processed right away; however, if there are messages, the <cod
>setTimeout</code> message will have to wait for other messages to be processed. For that
eason the second argument indicates a minimum time and not a guaranteed time.</p>
<p> <code > <a href="https://developer.mozilla.org/
n-US/docs/Web/APl/WindowTimers.setTimeout" title="/en-US/docs/window.setTimeout" > <
pan ster="coIor #ff0000;" >setTimeout</code> BMFEE) T FEAIATIE (BEEMEH
SEREI TR 2—EFE, FARX MY a2 R E&/IVME, R2/EH(E </p>
<h3 id=“SeveraI_Runtlme_communlcatlng_together“>Severa| Runtime communicating toget
er</h3>
<p>A web worker or a cross-origin iframe has its own stack, heap, and message queue. Two d
stinct runtimes can only communicate through sending messages via the <a href="https://de
eloper.mozilla.org/en-US/docs/DOM/window.postMessage" title="/en-US/docs/DOM/windo
.postMessage" > <code>postMessage </code> method. This method adds a message to
he other runtime if the latter listens to <code>message</code> events.</p>
<h2 id="Never _blocking">Never blocking</h2>
<p>A very interesting property of the event loop model is that JavaScript, unlike a lot of othe
languages, never blocks. Handling 1/0 is typically performed via events and callbacks, so whe
the application is waiting for an <a href="https://developer.mozilla.org/en-US/docs/Web/AP
/IndexedDB_API" title="/en-US/docs/IndexedDB" >IndexedDB query to return or an <a h
ef="https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest" title="/en-US/doc
/DOM/XMLHttpRequest">XHR request to return, it can still process other things like use
input.</p>

><code class=" language-js"><span clas

JR3Z4ERE: Concurrency model and Event Loop

https://ld246.com/article/1437220490910

<p>Legacy exceptions exist like <code>alert</code> or synchronous XHR, but it is consider
d as a good practice to avoid them. Beware, <a href="http://stackoverflow.com/questions/27
4025/is-javascript-guaranteed-to-be-single-threaded/2734311#2734311" class="external ext
rnal-icon" title="http://stackoverflow.com/questions/2734025/is-javascript-guaranteed-to-be
single-threaded/2734311#2734311">exceptions to the exception do exist (but are usual
y implementation bugs rather than anything else).</p>

<p> ZHAXSTFI/ORIZHARIEE, MIEFRLHNIT, BRIMRA T Ma

ert()</p>

JR3Z4ERE: Concurrency model and Event Loop

https://ld246.com/article/1437220490910

